Skip to main content
Log in

A new observable to measure the top-quark mass at hadron colliders

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A new method to measure the top-quark mass in high energetic hadron collisions is presented. We use theoretical predictions calculated at next-to-leading order accuracy in quantum chromodynamics to study the (normalized) differential distribution of the \(t\bar{t} + 1\mbox{-jet}\) cross section with respect to its invariant mass \(\sqrt{s_{t\bar{t} j}}\). The sensitivity of the method to the top-quark mass together with the impact of various theoretical and experimental uncertainties has been investigated and quantified. The new method allows for a complementary measurement of the top-quark mass parameter and has a high potential to become competitive in precision with respect to established approaches. Furthermore we emphasize that in the proposed method the mass parameter is uniquely defined through one-loop renormalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Private communication with Pavel Nadolsky.

  2. We observe that in this distribution also the argument of α s plays a role in determining the spectrum: if the second jet is generated by the shower, typically there would be an α s (p T ) factor associated to that emission. Instead, when computed with the exact matrix element, our choice of μ r =m t will results in a larger α s value and thus a harder spectrum, for p T >m t .

  3. A related analysis has been presented in Ref. [26]. However, in Ref. [26] no additional jet was required in the event selection.

  4. \(M^{W}_{T}=\sqrt{2 p_{T}^{\ell} p_{T}^{\nu}(1-\cos(\phi^{\ell}- \phi^{\nu}))}\) where is the lepton and ν is the neutrino coming from the Wℓν.

  5. Due to the unavailability of the \(t\bar{t} + 1\mbox{-jet}\) implementation in MC@NLO, this comparison was limited to a \(t \bar{t} \) NLO event sample.

References

  1. T. Aaltonen et al., Phys. Rev. D (2012)

  2. V.M. Abazov et al., Phys. Lett. B 703, 422 (2011). doi:10.1016/j.physletb.2011.08.015

    Article  ADS  Google Scholar 

  3. J. Beringer et al., Phys. Rev. D 86, 010001 (2012). doi:10.1103/PhysRevD.86.010001

    Article  ADS  Google Scholar 

  4. G. Aad et al., Phys. Lett. B 716, 1 (2012). doi:10.1016/j.physletb.2012.08.020

    Article  ADS  Google Scholar 

  5. S. Chatrchyan et al., Phys. Lett. B 716, 30 (2012). doi:10.1016/j.physletb.2012.08.021

    Article  ADS  Google Scholar 

  6. S. Heinemeyer, W. Hollik, D. Stockinger, A. Weber, G. Weiglein, J. High Energy Phys. 0608, 052 (2006). doi:10.1088/1126-6708/2006/08/052

    Article  ADS  Google Scholar 

  7. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice et al., J. High Energy Phys. 1208, 098 (2012). doi:10.1007/JHEP08(2012)098

    Article  ADS  Google Scholar 

  8. S. Alekhin, A. Djouadi, S. Moch, Phys. Lett. B 716, 214 (2012). doi:10.1016/j.physletb.2012.08.024

    Article  ADS  Google Scholar 

  9. M.S. Bilenky, S. Caberera, J. Fuster, S. Marti, G. Rodrigo et al., Phys. Rev. D 60, 114006 (1999). doi:10.1103/PhysRevD.60.114006

    Article  ADS  Google Scholar 

  10. U. Langenfeld, S. Moch, P. Uwer, Phys. Rev. D 80, 054009 (2009). doi:10.1103/PhysRevD.80.054009

    Article  ADS  Google Scholar 

  11. M. Aliev, H. Lacker, U. Langenfeld, S. Moch, P. Uwer et al., Comput. Phys. Commun. 182, 1034 (2011). doi:10.1016/j.cpc.2010.12.040

    Article  ADS  MATH  Google Scholar 

  12. S. Dittmaier, P. Uwer, S. Weinzierl, Phys. Rev. Lett. 98, 262002 (2007). doi:10.1103/PhysRevLett.98.262002

    Article  ADS  Google Scholar 

  13. S. Dittmaier, P. Uwer, S. Weinzierl, Eur. Phys. J. C 59, 625 (2009). doi:10.1140/epjc/s10052-008-0816-y

    Article  ADS  Google Scholar 

  14. S. Alioli, S.O. Moch, P. Uwer, J. High Energy Phys. 1201, 137 (2012). doi:10.1007/JHEP01(2012)137

    Article  ADS  Google Scholar 

  15. S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993). doi:10.1103/PhysRevD.48.3160

    Article  ADS  Google Scholar 

  16. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). doi:10.1088/1126-6708/2008/04/063

    Article  ADS  Google Scholar 

  17. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012). doi:10.1140/epjc/s10052-012-1896-2

    Article  ADS  Google Scholar 

  18. P.M. Nadolsky et al., Phys. Rev. D 78, 013004 (2008). doi:10.1103/PhysRevD.78.013004

    Article  ADS  Google Scholar 

  19. H.L. Lai, J. Huston, S. Mrenna, P. Nadolsky, D. Stump et al., J. High Energy Phys. 1004, 035 (2010). doi:10.1007/JHEP04(2010)035

    Article  ADS  Google Scholar 

  20. A. Martin, W. Stirling, R. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). doi:10.1140/epjc/s10052-009-1072-5

    Article  ADS  Google Scholar 

  21. S. Alekhin, J. Blumlein, S. Moch, Phys. Rev. D 86, 054009 (2012). doi:10.1103/PhysRevD.86.054009

    Article  ADS  Google Scholar 

  22. S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 1006, 043 (2010). doi:10.1007/JHEP06(2010)043

    Article  ADS  Google Scholar 

  23. S. Frixione, P. Nason, G. Ridolfi, J. High Energy Phys. 0709, 126 (2007). doi:10.1088/1126-6708/2007/09/126

    Article  ADS  Google Scholar 

  24. A. Kardos, C. Papadopoulos, Z. Trocsanyi, Phys. Lett. B 705, 76 (2011). doi:10.1016/j.physletb.2011.09.080

    Article  ADS  Google Scholar 

  25. T. Sjöstrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008). doi:10.1016/j.cpc.2008.01.036

    Article  ADS  MATH  Google Scholar 

  26. R. Frederix, F. Maltoni, J. High Energy Phys. 0901, 047 (2009). doi:10.1088/1126-6708/2009/01/047

    Article  ADS  Google Scholar 

  27. S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029 (2002)

    Article  ADS  Google Scholar 

  28. G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri et al., J. High Energy Phys. 0101, 010 (2001)

    Article  ADS  Google Scholar 

  29. G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri et al. (2002). HERWIG 6.5 release note. arXiv:hep-ph/0210213

  30. P.Z. Skands, D. Wicke, Eur. Phys. J. C 52, 133 (2007). doi:10.1140/epjc/s10052-007-0352-1

    Article  ADS  Google Scholar 

  31. T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006). doi:10.1088/1126-6708/2006/05/026

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with R. Nisius and S. Martí. We also thank T. Sjostrand for his comments and suggestions to study the color reconnection effects and M. Mangano for his comments on the manuscript. This work is partially supported by the Helmholtz Alliance “Physics at the Terascale” HA-101, by the German Federal Ministry for Education and Research (05H12KHE), by the Spanish Ministry of Economy and Competitivity (FPA2012-39055-C02-01 and AIC-D-2011-0688), by the German Research Foundation (DFG) through SFB-TR9 (B1), and by the European Commission through contract PITN-GA-2010-264564 (LHCPhenoNet).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Uwer.

Appendix

Appendix

Table 3 Similar to Table 1 but for a p T cut of 25 GeV in difference from 50 GeV used in Table 1
Table 4 Similar to Table 2 but for \(m_{t}^{\mathrm{pole}}=172.5~\mathrm{GeV}\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alioli, S., Fernandez, P., Fuster, J. et al. A new observable to measure the top-quark mass at hadron colliders. Eur. Phys. J. C 73, 2438 (2013). https://doi.org/10.1140/epjc/s10052-013-2438-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2438-2

Keywords

Navigation