Skip to main content
Log in

On cascade decays of squarks at the LHC in NLO QCD

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper we present an analysis at NLO QCD of the contribution from squark-squark production to the experimental signature \(2j+l^{+}l^{-}+ \displaystyle{\not}E_T (+X)\) with opposite-sign same flavor leptons, taking into account decays and experimental cuts. We consider the case in which one squark decays directly into the lightest neutralino \(\tilde{\chi}^{0} _{1}\) and the other one into the second lightest neutralino and subsequently into \(l^{+}l^{-} \tilde{\chi}^{0} _{1}\) via an intermediate slepton. On the one hand we study the effects of the NLO corrections on invariant mass distributions which can be used for future parameter determination. On the other hand we analyze the impact on predictions for cut-and-count searches using the given experimental signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In Table 2 we list the average value of the branching ratios for up and down type squarks, which, however, differ at most by ∼1 %. Differences between branching ratios at LO and NLO for squark decays are negligible (less than per mill) for the considered scenarios and so not shown.

  2. In reference [20] a different jet algorithm is used. Results for SPS1a′ presented there for y c =0.002 agree best with our results obtained using the anti-k T jet clustering algorithm.

  3. In our numerical analysis we use the theoretical endpoints \(m_{ll}^{\text {max}}=80.0,203.8~\mathrm{GeV}\) for SPS1a and 10.1.6.

  4. The theoretical lower endpoint of the m jll(thresh) distribution is given by \(m_{jll(\text{thresh})} ^{\text {min}}=215.4\) for SPS1a and \(m_{jll(\text {thresh})} ^{\text{min}}=437.1\) for 10.1.6 [15].

  5. From an experimental point of view the endpoint \(m_{jll}^{\text{max}}\) is assumed to be measured in a first step where for example always the jet is chosen yielding the smaller m jll . Here, we use the theoretical endpoints \(m_{jll} ^{\text {max}}=450.6,1147.7~\mathrm{GeV}\) for SPS1a and 10.1.6.

References

  1. S. Chatrchyan et al., Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  2. G. Aad et al., Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  3. S. Chatrchyan et al., Phys. Lett. B 718, 815–840 (2013). arXiv:1206.3949 [hep-ex]

    Article  ADS  Google Scholar 

  4. S. Chatrchyan et al. arXiv:1212.6961 [hep-ex]

  5. S. Chatrchyan et al. arXiv:1301.2175 [hep-ex]

  6. G. Aad et al., Eur. Phys. J. C 71, 1647 (2011). arXiv:1103.6208 [hep-ex]

    Article  ADS  Google Scholar 

  7. G. Aad et al. arXiv:1208.0949 [hep-ex]

  8. N. Arkani-Hamed, G.L. Kane, J. Thaler, L.-T. Wang, J. High Energy Phys. 0608, 070 (2006). arXiv:hep-ph/0512190

    Article  MathSciNet  ADS  Google Scholar 

  9. N. Bornhauser, M. Drees, Phys. Rev. D 86, 015025 (2012). arXiv:1205.6080 [hep-ph]

    Article  ADS  Google Scholar 

  10. J. Hubisz, J. Lykken, M. Pierini, M. Spiropulu, Phys. Rev. D 78, 075008 (2008). arXiv:0805.2398 [hep-ph]

    Article  ADS  Google Scholar 

  11. A.J. Barr, C.G. Lester, J. Phys. G 37, 123001 (2010). arXiv:1004.2732 [hep-ph]

    Article  ADS  Google Scholar 

  12. P. Falgari, C. Schwinn, C. Wever, J. High Energy Phys. 06, 052 (2012). arXiv:1202.2260 [hep-ph]

    Article  ADS  Google Scholar 

  13. I. Hinchliffe, F. Paige, M. Shapiro, J. Soderqvist, W. Yao, Phys. Rev. D 55, 5520–5540 (1997). arXiv:hep-ph/9610544

    Article  ADS  Google Scholar 

  14. H. Bachacou, I. Hinchliffe, F.E. Paige, Phys. Rev. D 62, 015009 (2000). arXiv:hep-ph/9907518

    Article  ADS  Google Scholar 

  15. B. Allanach, C. Lester, M.A. Parker, B. Webber, J. High Energy Phys. 0009, 004 (2000). arXiv:hep-ph/0007009

    Article  ADS  Google Scholar 

  16. G. Weiglein et al., Phys. Rep. 426, 47–358 (2006). arXiv:hep-ph/0410364

    Article  Google Scholar 

  17. B.K. Gjelsten, D.J. Miller, P. Osland, J. High Energy Phys. 0412, 003 (2004). arXiv:hep-ph/0410303

    Article  ADS  Google Scholar 

  18. D.J. Miller, P. Osland, A.R. Raklev, J. High Energy Phys. 0603, 034 (2006). arXiv:hep-ph/0510356

    Article  ADS  Google Scholar 

  19. C.G. Lester, Phys. Lett. B 655, 39–44 (2007). arXiv:hep-ph/0603171

    Article  ADS  Google Scholar 

  20. R. Horsky, M. Kramer, A. Muck, P.M. Zerwas, Phys. Rev. D 78, 035004 (2008). arXiv:0803.2603 [hep-ph]

    Article  ADS  Google Scholar 

  21. M. Bisset, R. Lu, N. Kersting, J. High Energy Phys. 1105, 095 (2011). arXiv:0806.2492 [hep-ph]

    Google Scholar 

  22. D. Costanzo, D.R. Tovey, J. High Energy Phys. 0904, 084 (2009). arXiv:0902.2331 [hep-ph]

    Article  ADS  Google Scholar 

  23. G. Polesello, D.R. Tovey, J. High Energy Phys. 1003, 030 (2010). arXiv:0910.0174 [hep-ph]

    Article  ADS  Google Scholar 

  24. K.T. Matchev, M. Park, Phys. Rev. Lett. 107, 061801 (2011). arXiv:0910.1584 [hep-ph]

    Article  ADS  Google Scholar 

  25. K.T. Matchev, F. Moortgat, L. Pape, M. Park, J. High Energy Phys. 0908, 104 (2009). arXiv:0906.2417 [hep-ph]

    Article  ADS  Google Scholar 

  26. H.-C. Cheng, J.F. Gunion, Z. Han, B. McElrath, Phys. Rev. D 80, 035020 (2009). arXiv:0905.1344 [hep-ph]

    Article  ADS  Google Scholar 

  27. L. Edelhauser, W. Porod, R.K. Singh, J. High Energy Phys. 1008, 053 (2010). arXiv:1005.3720 [hep-ph]

    Article  ADS  Google Scholar 

  28. K. Agashe, D. Kim, M. Toharia, D.G. Walker, Phys. Rev. D 82, 015007 (2010). arXiv:1003.0899 [hep-ph]

    Article  ADS  Google Scholar 

  29. M.M. Nojiri, K. Sakurai, Phys. Rev. D 82, 115026 (2010). arXiv:1008.1813 [hep-ph]

    Article  ADS  Google Scholar 

  30. A. Barr, T. Khoo, P. Konar, K. Kong, C. Lester et al., Phys. Rev. D 84, 095031 (2011). arXiv:1105.2977 [hep-ph]

    Article  ADS  Google Scholar 

  31. C.-Y. Chen, A. Freitas, J. High Energy Phys. 1201, 124 (2012). arXiv:1110.6192 [hep-ph]

    ADS  Google Scholar 

  32. K. Choi, D. Guadagnoli, C.B. Park, J. High Energy Phys. 1111, 117 (2011). arXiv:1109.2201 [hep-ph]

    Article  ADS  Google Scholar 

  33. B.K. Gjelsten, D.J. Miller, P. Osland, A.R. Raklev, AIP Conf. Proc. 903, 257–260 (2007). arXiv:hep-ph/0611259

    Article  ADS  Google Scholar 

  34. A. Barr, Phys. Lett. B 596, 205–212 (2004). arXiv:hep-ph/0405052

    Article  ADS  Google Scholar 

  35. J.M. Smillie, B.R. Webber, J. High Energy Phys. 10, 069 (2005). arXiv:hep-ph/0507170

    Article  ADS  Google Scholar 

  36. C. Athanasiou, C.G. Lester, J.M. Smillie, B.R. Webber, J. High Energy Phys. 0608, 055 (2006). arXiv:hep-ph/0605286

    Article  ADS  Google Scholar 

  37. M. Battaglia, A.K. Datta, A. De Roeck, K. Kong, K.T. Matchev, eConf C 050318, 0302 (2005). arXiv:hep-ph/0507284

    Google Scholar 

  38. A. Datta, K. Kong, K.T. Matchev, Phys. Rev. D 72, 096006 (2005). arXiv:hep-ph/0509246

    Article  ADS  Google Scholar 

  39. L.-T. Wang, I. Yavin, J. High Energy Phys. 0704, 032 (2007). arXiv:hep-ph/0605296

    Article  ADS  Google Scholar 

  40. S. Choi, K. Hagiwara, H.-U. Martyn, K. Mawatari, P. Zerwas, Eur. Phys. J. C 51, 753–774 (2007). arXiv:hep-ph/0612301

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Kilic, L.-T. Wang, I. Yavin, J. High Energy Phys. 0705, 052 (2007). arXiv:hep-ph/0703085

    Article  ADS  Google Scholar 

  42. L.-T. Wang, I. Yavin, Int. J. Mod. Phys. A 23, 4647–4668 (2008). arXiv:0802.2726 [hep-ph]

    Article  ADS  Google Scholar 

  43. S. Choi, M. Drees, A. Freitas, P. Zerwas, Phys. Rev. D 78, 095007 (2008). arXiv:0808.2410 [hep-ph]

    Article  ADS  Google Scholar 

  44. M. Burns, K. Kong, K.T. Matchev, M. Park, J. High Energy Phys. 0810, 081 (2008). arXiv:0808.2472 [hep-ph]

    Article  ADS  Google Scholar 

  45. O. Gedalia, S.J. Lee, G. Perez, Phys. Rev. D 80, 035012 (2009). arXiv:0901.4438 [hep-ph]

    Article  ADS  Google Scholar 

  46. W. Ehrenfeld, A. Freitas, A. Landwehr, D. Wyler, J. High Energy Phys. 0907, 056 (2009). arXiv:0904.1293 [hep-ph]

    Article  ADS  Google Scholar 

  47. N. Srimanobhas, B. Asavapibhop, J. Phys. G 38, 075001 (2011)

    Article  ADS  Google Scholar 

  48. H.K. Dreiner, M. Kramer, J.M. Lindert, B. O’Leary, J. High Energy Phys. 04, 109 (2010). arXiv:1003.2648 [hep-ph]

    Article  ADS  Google Scholar 

  49. W. Hollik, J.M. Lindert, D. Pagani, J. High Energy Phys. 1303, 139 (2013)

    Article  ADS  Google Scholar 

  50. R. Boughezal, M. Schulze. arXiv:1212.0898 [hep-ph]

  51. W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Phys. Rev. Lett. 74, 2905–2908 (1995). arXiv:hep-ph/9412272

    Article  ADS  Google Scholar 

  52. W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Z. Phys. C 69, 163–166 (1995). arXiv:hep-ph/9505416

    Google Scholar 

  53. W. Beenakker, R. Hopker, M. Spira, P.M. Zerwas, Nucl. Phys. B 492, 51–103 (1997). arXiv:hep-ph/9610490

    ADS  Google Scholar 

  54. W. Beenakker, M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Nucl. Phys. B 515, 3–14 (1998). arXiv:hep-ph/9710451

    Article  ADS  Google Scholar 

  55. U. Langenfeld, S.-O. Moch, Phys. Lett. B 675, 210–221 (2009). arXiv:0901.0802 [hep-ph]

    Article  ADS  Google Scholar 

  56. A. Kulesza, L. Motyka, Phys. Rev. Lett. 102, 111802 (2009). arXiv:0807.2405 [hep-ph]

    Article  ADS  Google Scholar 

  57. A. Kulesza, L. Motyka, Phys. Rev. D 80, 095004 (2009). arXiv:0905.4749 [hep-ph]

    Article  ADS  Google Scholar 

  58. W. Beenakker et al., J. High Energy Phys. 12, 041 (2009). arXiv:0909.4418 [hep-ph]

    Article  ADS  Google Scholar 

  59. W. Beenakker et al., J. High Energy Phys. 08, 098 (2010). arXiv:1006.4771 [hep-ph]

    Article  ADS  Google Scholar 

  60. M. Beneke, P. Falgari, C. Schwinn, Nucl. Phys. B 842, 414–474 (2011). arXiv:1007.5414 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  61. W. Beenakker et al., J. High Energy Phys. 01, 076 (2012). arXiv:1110.2446 [hep-ph]

    Article  ADS  Google Scholar 

  62. S. Bornhauser, M. Drees, H.K. Dreiner, J.S. Kim, Phys. Rev. D 76, 095020 (2007). arXiv:0709.2544 [hep-ph]

    Article  ADS  Google Scholar 

  63. A. Arhrib, R. Benbrik, K. Cheung, T.-C. Yuan, J. High Energy Phys. 02, 048 (2010). arXiv:0911.1820 [hep-ph]

    Article  ADS  Google Scholar 

  64. W. Hollik, M. Kollar, M.K. Trenkel, J. High Energy Phys. 02, 018 (2008). arXiv:0712.0287 [hep-ph]

    Article  ADS  Google Scholar 

  65. W. Hollik, E. Mirabella, J. High Energy Phys. 12, 087 (2008). arXiv:0806.1433 [hep-ph]

    Article  ADS  Google Scholar 

  66. W. Hollik, E. Mirabella, M.K. Trenkel, J. High Energy Phys. 02, 002 (2009). arXiv:0810.1044 [hep-ph]

    Article  ADS  Google Scholar 

  67. M. Beccaria, G. Macorini, L. Panizzi, F.M. Renard, C. Verzegnassi, Int. J. Mod. Phys. A 23, 4779–4810 (2008). arXiv:0804.1252 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  68. E. Mirabella, J. High Energy Phys. 12, 012 (2009). arXiv:0908.3318 [hep-ph]

    Article  ADS  Google Scholar 

  69. J. Germer, W. Hollik, E. Mirabella, M.K. Trenkel, J. High Energy Phys. 08, 023 (2010). arXiv:1004.2621 [hep-ph]

    Article  ADS  Google Scholar 

  70. J. Germer, W. Hollik, E. Mirabella, J. High Energy Phys. 05, 068 (2011). arXiv:1103.1258 [hep-ph]

    Article  ADS  Google Scholar 

  71. P. Falgari, C. Schwinn, C. Wever, J. High Energy Phys. 1301, 085 (2013). arXiv:1211.3408 [hep-ph]

    Article  ADS  Google Scholar 

  72. D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn, I. Wigmore, Phys. Rev. D 87, 014002 (2013). arXiv:1211.0286 [hep-ph]

    Article  ADS  Google Scholar 

  73. K.-i. Hikasa, Y. Nakamura, Z. Phys. C 70, 139–144 (1996). arXiv:hep-ph/9501382. [ERRATUM—ibid. 71, 356 (1996)]

    Article  Google Scholar 

  74. A. Djouadi, W. Hollik, C. Junger, Phys. Rev. D 55, 6975–6985 (1997). arXiv:hep-ph/9609419

    Article  ADS  Google Scholar 

  75. S. Kraml, H. Eberl, A. Bartl, W. Majerotto, W. Porod, Phys. Lett. B 386, 175–182 (1996). arXiv:hep-ph/9605412

    Article  ADS  Google Scholar 

  76. A. Bartl, W. Majerotto, W. Porod, Z. Phys. C 64, 499–508 (1994). [ERRATUM—ibid. 68, 518 (1995)]

    Article  ADS  Google Scholar 

  77. A. Bartl et al., Phys. Lett. B 435, 118–124 (1998). arXiv:hep-ph/9804265

    Article  ADS  Google Scholar 

  78. W. Beenakker, R. Hopker, P.M. Zerwas, Phys. Lett. B 378, 159–166 (1996). arXiv:hep-ph/9602378

    Article  ADS  Google Scholar 

  79. W. Beenakker, R. Hopker, T. Plehn, P.M. Zerwas, Z. Phys. C 75, 349–356 (1997). arXiv:hep-ph/9610313

    Google Scholar 

  80. J. Guasch, J. Sola, W. Hollik, Phys. Lett. B 437, 88–99 (1998). arXiv:hep-ph/9802329

    Article  ADS  Google Scholar 

  81. J. Guasch, W. Hollik, J. Sola, J. High Energy Phys. 10, 040 (2002). arXiv:hep-ph/0207364

    Article  ADS  Google Scholar 

  82. A. Arhrib, R. Benbrik, Phys. Rev. D 71, 095001 (2005). arXiv:hep-ph/0412349

    Article  ADS  Google Scholar 

  83. A. Arhrib, R. Benbrik, Afr. J. Math. Phys. 3, 85–91 (2006). arXiv:hep-ph/0511116

    Google Scholar 

  84. Q. Li, L.G. Jin, C.S. Li, Phys. Rev. D 66, 115008 (2002). arXiv:hep-ph/0207363

    Article  ADS  Google Scholar 

  85. C. Weber, K. Kovarik, H. Eberl, W. Majerotto, Nucl. Phys. B 776, 138–169 (2007). arXiv:hep-ph/0701134

    Article  ADS  Google Scholar 

  86. K. Nakamura et al., J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  87. P.M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin et al., Phys. Rev. D 78, 013004 (2008). arXiv:0802.0007 [hep-ph]

    Article  ADS  Google Scholar 

  88. B.C. Allanach et al., Eur. Phys. J. C 25, 113–123 (2002). arXiv:hep-ph/0202233

    Article  ADS  Google Scholar 

  89. S. AbdusSalam, B. Allanach, H. Dreiner, J. Ellis, U. Ellwanger et al., Eur. Phys. J. C 71, 1835 (2011). arXiv:1109.3859 [hep-ph]

    Article  ADS  Google Scholar 

  90. B.C. Allanach, Comput. Phys. Commun. 143, 305–331 (2002). arXiv:hep-ph/0104145

    Article  ADS  MATH  Google Scholar 

  91. M. Muhlleitner, A. Djouadi, Y. Mambrini, Comput. Phys. Commun. 168, 46–70 (2005). arXiv:hep-ph/0311167

    Article  ADS  Google Scholar 

  92. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 [hep-ph]

    Article  ADS  Google Scholar 

  93. H.-C. Cheng, J.F. Gunion, Z. Han, G. Marandella, B. McElrath, J. High Energy Phys. 0712, 076 (2007). arXiv:0707.0030 [hep-ph]

    Article  ADS  Google Scholar 

  94. H. Baer, C.-h. Chen, F. Paige, X. Tata, Phys. Rev. D 52, 2746–2759 (1995). arXiv:hep-ph/9503271

    Article  ADS  Google Scholar 

  95. G. Bayatian et al., J. Phys. G 34, 995–1579 (2007)

    Article  Google Scholar 

  96. M.M. Nojiri, Y. Shimizu, S. Okada, K. Kawagoe, J. High Energy Phys. 0806, 035 (2008). arXiv:0802.2412 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Research Executive Agency of the European Union under the Grant Agreement PITN-GA-2010-264564 (LHCPhenonet). We acknowledge use of the computing resources at the Rechenzentrum Garching.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Lindert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollik, W., Lindert, J.M. & Pagani, D. On cascade decays of squarks at the LHC in NLO QCD. Eur. Phys. J. C 73, 2410 (2013). https://doi.org/10.1140/epjc/s10052-013-2410-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2410-1

Keywords

Navigation