Skip to main content
Log in

Heavy MSSM Higgs production at the LHC and decays to WW , ZZ at higher orders

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper we discuss the production of a heavy scalar MSSM Higgs boson H and its subsequent decays into pairs of electroweak gauge bosons WW and ZZ. We perform a scan over the relevant MSSM parameters, using constraints from direct Higgs searches and several low-energy observables. We then compare the possible size of the ppHWW,ZZ cross sections with corresponding Standard Model cross sections. We also include the full MSSM vertex corrections to the HWW,ZZ decay and combine them with the Higgs propagator corrections, paying special attention to the IR-divergent contributions. We find that the vertex corrections can be as large as −30 % in MSSM parameter space regions which are currently probed by Higgs searches at the LHC. Once the sensitivity of these searches reaches two percent of the SM signal strength the vertex corrections can be numerically as important as the leading order and Higgs self-energy corrections and have to be considered when setting limits on MSSM parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In the case of \(\mathcal {CP}\)-violation, it is usual to take \(M_{H^{\pm}}\) as input parameter instead of M A because, in the \(\mathcal {CP}\)-violating case the pseudoscalar Higgs boson A mixes with the \(\mathcal {CP}\)-even neutral Higgs bosons.

  2. For the HVV decays considered in this paper, \(\mathcal{A}_{A}^{\text{tree}}\) is of course zero.

  3. Note that the α used here is the tree-level value, rather than the so-called ‘effective’ α often used to account for Higgs mixing.

  4. Throughout, a capital Δ implies an absolute correction and small δ a relative correction.

  5. Note that this only involves the \(\mathcal {CP}\)-eigenstate Higgs boson H, as we are treating this particular diagram strictly at one-loop level, with no Z-factors applied.

  6. Plots varied over different parameters, and around a different point in the MSSM parameter space, show very similar features.

  7. Of course the mass of the SM Higgs boson \(M_{H_{\text{SM}}}\) must be set equal to the heavy MSSM Higgs boson mass M H .

  8. The trilinear couplings A b and A τ are set to A t , and the trilinear couplings for the first and second fermion generations are set to zero.

  9. Details about this approximation can be found in [14].

References

  1. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1–29 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  2. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  3. J.F. Gunion, H.E. Haber, Phys. Rev. D 67, 075019 (2003). arXiv:hep-ph/0207010

    Article  ADS  Google Scholar 

  4. H.E. Haber, Nucl. Phys. B, Proc. Suppl. 116, 291–295 (2003). arXiv:hep-ph/0212010 [hep-ph]

    Article  ADS  Google Scholar 

  5. J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 257, 83–91 (1991)

    Article  ADS  Google Scholar 

  6. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rev. D 58, 091701 (1998). arXiv:hep-ph/9803277

    Article  ADS  Google Scholar 

  7. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020

    Article  ADS  Google Scholar 

  8. B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod, P. Slavich, J. High Energy Phys. 09, 044 (2004). arXiv:hep-ph/0406166

    Article  ADS  Google Scholar 

  9. W. Bernreuther, P. Gonzalez, M. Wiebusch, Eur. Phys. J. C 69, 31–43 (2010). arXiv:1003.5585 [hep-ph]

    Article  ADS  Google Scholar 

  10. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  11. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898 [hep-ph]

    Article  ADS  Google Scholar 

  12. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320

    Article  ADS  MATH  Google Scholar 

  13. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343–366 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  14. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, J. High Energy Phys. 02, 047 (2007). arXiv:hep-ph/0611326

    Article  ADS  Google Scholar 

  15. S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Phys. Lett. B 652, 300–309 (2007). arXiv:0705.0746 [hep-ph]

    Article  ADS  Google Scholar 

  16. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Comput. Phys. Commun. 180, 1426–1427 (2009)

    Article  ADS  MATH  Google Scholar 

  17. T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, Nucl. Phys. B, Proc. Suppl. 205–206, 152–157 (2010). arXiv:1007.0956 [hep-ph]

    Article  Google Scholar 

  18. W. Hollik, J.-H. Zhang, Phys. Rev. D 84, 055022 (2011). arXiv:1109.4781 [hep-ph]

    Article  ADS  Google Scholar 

  19. W. Hollik, J.-H. Zhang. arXiv:1011.6537 [hep-ph]

  20. A. Pilaftsis, Phys. Lett. B 435, 88–100 (1998). arXiv:hep-ph/9805373

    Article  ADS  Google Scholar 

  21. A. Pilaftsis, C.E.M. Wagner, Nucl. Phys. B 553, 3–42 (1999). arXiv:hep-ph/9902371

    Article  ADS  Google Scholar 

  22. A. Pilaftsis. arXiv:hep-ph/0003232

  23. K.E. Williams, G. Weiglein, Phys. Lett. B 660, 217–227 (2008). arXiv:0710.5320 [hep-ph]

    Article  ADS  Google Scholar 

  24. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265–368 (2006). arXiv:hep-ph/0412214

    Article  ADS  Google Scholar 

  25. S. Dittmaier, S. Dittmaier, C. Mariotti, G. Passarino, R. Tanaka et al. arXiv:1201.3084 [hep-ph]

  26. T. Figy, D. Zeppenfeld, Phys. Lett. B 591, 297–303 (2004). arXiv:hep-ph/0403297

    Article  ADS  Google Scholar 

  27. B.A. Kniehl, Nucl. Phys. B 357, 439–466 (1991)

    Article  ADS  Google Scholar 

  28. B.A. Kniehl, Nucl. Phys. B 352, 1–26 (1991)

    Article  ADS  Google Scholar 

  29. A. Denner, Fortschr. Phys. 41, 307–420 (1993). arXiv:0709.1075 [hep-ph]

    Google Scholar 

  30. T.D. Lee, M. Nauenberg, Phys. Rev. 133, B1549–B1562 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  31. T. Kinoshita, J. Math. Phys. 3, 650–677 (1962)

    Article  ADS  MATH  Google Scholar 

  32. F. Bloch, A. Nordsieck, Phys. Rev. 52(2), 54–59 (1937)

    Article  ADS  Google Scholar 

  33. R.M. Barnett, H.E. Haber, D.E. Soper, Nucl. Phys. B 306, 697 (1988)

    Article  ADS  Google Scholar 

  34. D.A. Dicus, S. Willenbrock, Phys. Rev. D 39, 751 (1989)

    Article  ADS  Google Scholar 

  35. S. Dittmaier, M. Kramer, M. Spira, Phys. Rev. D 70, 074010 (2004). arXiv:hep-ph/0309204

    Article  ADS  Google Scholar 

  36. O. Brein, Comput. Phys. Commun. 170, 42–48 (2005). arXiv:hep-ph/0407340

    Article  ADS  Google Scholar 

  37. A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  38. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  39. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898 [hep-ph]

    Article  ADS  Google Scholar 

  40. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 04, 036 (2012). arXiv:1202.1416 [hep-ex]

    ADS  Google Scholar 

  41. G. Aad et al. (ATLAS Collaboration), arXiv:1204.2760 [hep-ex]

  42. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 698, 97–104 (2011). arXiv:1011.1931 [hep-ex]

    Article  ADS  Google Scholar 

  43. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 27, 311–329 (2003). arXiv:hep-ex/0206022

    Article  ADS  Google Scholar 

  44. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 710, 26–48 (2012). arXiv:1202.1488 [hep-ex]

    Article  ADS  Google Scholar 

  45. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 707, 27–45 (2012). arXiv:1108.5064 [hep-ex]

    Article  ADS  Google Scholar 

  46. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 201801 (2009). arXiv:0906.1014 [hep-ex]

    Article  ADS  Google Scholar 

  47. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 105, 251801 (2010). arXiv:1008.3564 [hep-ex]

    Article  ADS  Google Scholar 

  48. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 383–402 (2012). arXiv:1202.1415 [hep-ex]

    Article  ADS  Google Scholar 

  49. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 107, 221802 (2011). arXiv:1109.3357 [hep-ex]

    Article  ADS  Google Scholar 

  50. T. Aaltonen et al. (CDF and D0 Collaborations), Phys. Rev. D 82, 011102 (2010). arXiv:1005.3216 [hep-ex]

    Article  ADS  Google Scholar 

  51. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 85, 032005 (2012). arXiv:1106.4782 [hep-ex]

    Article  ADS  Google Scholar 

  52. LEP Higgs Working for Higgs boson searches Collaboration, arXiv:hep-ex/0107032

  53. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 104, 141801 (2010). arXiv:0911.3935 [hep-ex]

    Article  ADS  Google Scholar 

  54. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 107, 231801 (2011). arXiv:1109.3615 [hep-ex]

    Article  ADS  Google Scholar 

  55. T. Aaltonen et al. (The CDF Collaboration), Phys. Rev. Lett. 104, 061803 (2010). arXiv:1001.4468 [hep-ex]

    Article  ADS  Google Scholar 

  56. D. Benjamin et al., for the CDF and D0 Collaboration. arXiv:1108.3331 [hep-ex]

  57. J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 32, 475–492 (2004). arXiv:hep-ex/0401022

    Article  ADS  Google Scholar 

  58. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 663, 26–36 (2008). arXiv:0712.0598 [hep-ex]

    Article  ADS  Google Scholar 

  59. S. Chatrchyan et al. (CMS Collaboration), arXiv:1202.1997 [hep-ex]

  60. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 104, 071801 (2010). arXiv:0912.5285 [hep-ex]

    Article  ADS  Google Scholar 

  61. G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B 682, 381–390 (2010). arXiv:0707.0373 [hep-ex]

    Article  ADS  Google Scholar 

  62. LEP Higgs Working Group for Higgs boson searches Collaboration, arXiv:hep-ex/0107031

  63. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 101803 (2009). arXiv:0907.1269 [hep-ex]

    Article  ADS  Google Scholar 

  64. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 107, 121801 (2011). arXiv:1106.4885 [hep-ex]

    Article  ADS  Google Scholar 

  65. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 671, 349–355 (2009). arXiv:0806.0611 [hep-ex]

    Article  ADS  Google Scholar 

  66. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 103, 061801 (2009). arXiv:0905.3381 [hep-ex]

    Article  ADS  Google Scholar 

  67. D. Benjamin et al. (Tevatron New Phenomena and Higgs Working Group Collaboration). arXiv:1003.3363 [hep-ex]

  68. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 707, 323–329 (2012). arXiv:1106.4555 [hep-ex]

    Article  ADS  Google Scholar 

  69. G. Abbiendi et al. (OPAL Collaboration), Eur. Phys. J. C 23, 397–407 (2002). arXiv:hep-ex/0111010

    Article  ADS  Google Scholar 

  70. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 710, 91–113 (2012). arXiv:1202.1489 [hep-ex]

    Article  ADS  Google Scholar 

  71. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84, 092002 (2011). arXiv:1107.1268 [hep-ex]

    Article  ADS  Google Scholar 

  72. P. Achard et al. (L3 Collaboration), Phys. Lett. B 609, 35–48 (2005). arXiv:hep-ex/0501033

    Article  ADS  Google Scholar 

  73. TEVNPH Working Group Collaboration, and others. arXiv:1107.4960 [hep-ex]

  74. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 698, 6–13 (2011). arXiv:1012.0874 [hep-ex]

    Article  ADS  Google Scholar 

  75. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 705, 174–192 (2011). arXiv:1107.5003 [hep-ex]

    Article  ADS  Google Scholar 

  76. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 108, 111802 (2012). arXiv:1112.2577 [hep-ex]

    Article  ADS  Google Scholar 

  77. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 102, 021802 (2009). arXiv:0809.3930 [hep-ex]

    Article  ADS  Google Scholar 

  78. G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 108, 111803 (2012). arXiv:1202.1414 [hep-ex]

    Article  ADS  Google Scholar 

  79. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 103, 101802 (2009). arXiv:0906.5613 [hep-ex]

    Article  ADS  Google Scholar 

  80. S. Schael et al. (ALEPH Collaboration), Eur. Phys. J. C 47, 547–587 (2006). arXiv:hep-ex/0602042

    Article  ADS  Google Scholar 

  81. V.M. Abazov et al. (D0 Collaboration), Phys. Lett. B 682, 278–286 (2009). arXiv:0908.1811 [hep-ex]

    Article  ADS  Google Scholar 

  82. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 710, 49–66 (2012). arXiv:1202.1408 [hep-ex]

    Article  ADS  Google Scholar 

  83. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 102, 251801 (2009). arXiv:0903.4800 [hep-ex]

    Article  ADS  Google Scholar 

  84. V.M. Abazov et al. (The D0 Collaboration), Phys. Rev. Lett. 104, 061804 (2010). arXiv:1001.4481 [hep-ex]

    Article  ADS  Google Scholar 

  85. J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 34, 399–418 (2004). arXiv:hep-ex/0404012

    Article  ADS  Google Scholar 

  86. TEVNPH (Tevatron New Phenomina and Higgs Working Group) Collaboration, arXiv:1107.5518 [hep-ex]

  87. S. Chatrchyan et al. (CMS Collaboration), J. High Energy Phys. 03, 040 (2012). arXiv:1202.3478 [hep-ex]

    Article  ADS  Google Scholar 

  88. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 102, 231801 (2009). arXiv:0901.1887 [hep-ex]

    Article  ADS  Google Scholar 

  89. J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 38, 1–28 (2004). arXiv:hep-ex/0410017

    Article  ADS  Google Scholar 

  90. CDF Notes 7307 10439 10105 10799 10596 10599 10573 10010 7712 10574 10806 10500 10796 9999 10798 10485 8353

  91. D0 Notes 6229 6008 6083 6305 6227 6299 5985 6301 5974 6302 5739 5845 6286 5757 6296 5726 6220 5871 6295 6183 6171 6219 6309 6276 5873 6304 5740

  92. CMS Physics Analysis Summaries HIG-11-029 HIG-11-023 HIG-11-031 HIG-11-008

  93. ATLAS CONF Notes 2012-014 2012-019 2012-017 2011-052 2011-132 2012-016 2011-094 2011-157 2012-015 2011-103 2012-018 2012-012

  94. LHWG Notes 2002-02

  95. A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108, 56–74 (1998). arXiv:hep-ph/9704448

    Article  ADS  MATH  Google Scholar 

  96. S. Catani, D. de Florian, M. Grazzini, J. High Energy Phys. 05, 025 (2001). arXiv:hep-ph/0102227

    Article  ADS  Google Scholar 

  97. R.V. Harlander, W.B. Kilgore, Phys. Rev. D 64, 013015 (2001). arXiv:hep-ph/0102241

    Article  ADS  Google Scholar 

  98. R.V. Harlander, W.B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002). arXiv:hep-ph/0201206

    Article  ADS  Google Scholar 

  99. C. Anastasiou, K. Melnikov, Nucl. Phys. B 646, 220–256 (2002). arXiv:hep-ph/0207004

    Article  ADS  Google Scholar 

  100. V. Ravindran, J. Smith, W.L. van Neerven, Nucl. Phys. B 665, 325–366 (2003). arXiv:hep-ph/0302135

    Article  ADS  Google Scholar 

  101. C. Anastasiou, R. Boughezal, F. Petriello, J. High Energy Phys. 04, 003 (2009). arXiv:0811.3458 [hep-ph]

    Article  ADS  Google Scholar 

  102. S. Dawson, Nucl. Phys. B 359, 283–300 (1991)

    Article  ADS  Google Scholar 

  103. A. Djouadi, M. Spira, P.M. Zerwas, Phys. Lett. B 264, 440–446 (1991)

    Article  ADS  Google Scholar 

  104. M. Spira, A. Djouadi, D. Graudenz, P.M. Zerwas, Nucl. Phys. B 453, 17–82 (1995). arXiv:hep-ph/9504378

    Article  ADS  Google Scholar 

  105. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Phys. Lett. B 595, 432–441 (2004). arXiv:hep-ph/0404071

    Article  ADS  Google Scholar 

  106. G. Degrassi, F. Maltoni, Phys. Lett. B 600, 255–260 (2004). arXiv:hep-ph/0407249

    Article  ADS  Google Scholar 

  107. S. Actis, G. Passarino, C. Sturm, S. Uccirati, Phys. Lett. B 670, 12–17 (2008). arXiv:0809.1301 [hep-ph]

    Article  ADS  Google Scholar 

  108. S. Actis, G. Passarino, C. Sturm, S. Uccirati, Nucl. Phys. B 811, 182–273 (2009). arXiv:0809.3667 [hep-ph]

    Article  ADS  MATH  Google Scholar 

  109. S. Catani, D. de Florian, M. Grazzini, P. Nason, J. High Energy Phys. 07, 028 (2003). arXiv:hep-ph/0306211

    Article  ADS  Google Scholar 

  110. D. de Florian, M. Grazzini, Phys. Lett. B 674, 291–294 (2009). arXiv:0901.2427 [hep-ph]

    Article  ADS  Google Scholar 

  111. O. Brein, A. Djouadi, R. Harlander, Phys. Lett. B 579, 149–156 (2004). arXiv:hep-ph/0307206

    Article  ADS  Google Scholar 

  112. M.L. Ciccolini, S. Dittmaier, M. Kramer, Phys. Rev. D 68, 073003 (2003). arXiv:hep-ph/0306234

    Article  ADS  Google Scholar 

  113. K.A. Assamagan et al. (Higgs Working Group Collaboration). arXiv:hep-ph/0406152

  114. R.V. Harlander, W.B. Kilgore, Phys. Rev. D 68, 013001 (2003). arXiv:hep-ph/0304035

    Article  ADS  Google Scholar 

  115. T. Han, G. Valencia, S. Willenbrock, Phys. Rev. Lett. 69, 3274–3277 (1992). arXiv:hep-ph/9206246

    Article  ADS  Google Scholar 

  116. J.M. Campbell, R.K. Ellis, Phys. Rev. D 60, 113006 (1999). arXiv:hep-ph/9905386

    Article  ADS  Google Scholar 

  117. T. Figy, C. Oleari, D. Zeppenfeld, Phys. Rev. D 68, 073005 (2003). arXiv:hep-ph/0306109

    Article  ADS  Google Scholar 

  118. E.L. Berger, J.M. Campbell, Phys. Rev. D 70, 073011 (2004). arXiv:hep-ph/0403194

    Article  ADS  Google Scholar 

  119. U. Aglietti et al. arXiv:hep-ph/0612172

  120. W. Beenakker et al., Phys. Rev. Lett. 87, 201805 (2001). arXiv:hep-ph/0107081

    Article  ADS  Google Scholar 

  121. L. Reina, S. Dawson, Phys. Rev. Lett. 87, 201804 (2001). arXiv:hep-ph/0107101

    Article  ADS  Google Scholar 

  122. S. Dawson, L.H. Orr, L. Reina, D. Wackeroth, Phys. Rev. D 67, 071503 (2003). arXiv:hep-ph/0211438

    Article  ADS  Google Scholar 

  123. O. Brein, W. Hollik, Phys. Rev. D 68, 095006 (2003). arXiv:hep-ph/0305321

    Article  ADS  Google Scholar 

  124. O. Brein, W. Hollik, Phys. Rev. D 76, 035002 (2007). arXiv:0705.2744 [hep-ph]

    Article  ADS  Google Scholar 

  125. M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. Lett. 99, 161803 (2007). arXiv:0707.0381 [hep-ph]

    Article  ADS  Google Scholar 

  126. M. Ciccolini, A. Denner, S. Dittmaier, Phys. Rev. D 77, 013002 (2008). arXiv:0710.4749 [hep-ph]

    Article  ADS  Google Scholar 

  127. S. Dittmaier et al. (LHC Higgs Cross Section Working Group Collaboration). arXiv:1101.0593 [hep-ph]

  128. K. Nakamura et al. (Particle Data Group Collaboration), J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  129. G.P. Lepage, J. Comput. Phys. 27(2), 192–203 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  130. http://hepsource.sf.net/dvegas

  131. N. Kauer, D. Zeppenfeld, Phys. Rev. D 65, 014021 (2002). arXiv:hep-ph/0107181

    Article  ADS  Google Scholar 

  132. N. Kauer, Phys. Rev. D 67, 054013 (2003). arXiv:hep-ph/0212091

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Georg Weiglein for helpful discussions, and for a thorough reading of an early draft of this paper. P.G. is supported by DFG SFB/TR9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wiebusch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, P., Palmer, S., Wiebusch, M. et al. Heavy MSSM Higgs production at the LHC and decays to WW , ZZ at higher orders. Eur. Phys. J. C 73, 2367 (2013). https://doi.org/10.1140/epjc/s10052-013-2367-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2367-0

Keywords

Navigation