Skip to main content
Log in

Temperature and quark density effects on the chiral condensate: an AdS/QCD study

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate the dependence of the chiral condensate \(\langle\bar{q}q\rangle\) on the temperature and quark density using the soft-wall holographic model of QCD, adopting geometries with black holes at finite temperature and quark chemical potential μ. We find that, for μ below a critical value, increasing the temperature the condensate decreases and vanishes at a temperature \(\tilde{T}\simeq210~\mathrm{MeV}\) (at μ=0). An analogous behaviour is observed increasing the chemical potential at fixed temperature. These results agree with the findings obtained by other methods. We also comment on the robustness of the results if geometries not involving black holes are adopted at low temperature, and an Hawking–Page transition is implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. An interesting discussion about understanding and foremost issues in QCD can be found in [1].

  2. For a review see [2].

  3. Recent results can be found in [35].

  4. L M and R M are in the singlet representation of SU(N f ) R and SU(N f ) L , respectively.

  5. In another class of holographic models, chiral symmetry is broken by boundary conditions on the gauge fields [25, 26].

  6. It has also been proposed to restrict the validity of the model to the IR region, in which case m q should be interpreted as a constituent quark mass [35].

  7. A critical temperature T C ≃210 MeV, associated to the deconfinement transition, has been obtained in a soft-wall model with AdS/BH geometry and no Hawking–Page transition, analyzing the static quark-antiquark pair potential [42].

  8. The factor here is different from the one found in [27] due to a different definition of the scalar field X 0.

References

  1. M. Shifman, Int. J. Mod. Phys. A 25, 4015 (2010)

    Article  ADS  MATH  Google Scholar 

  2. P. Braun-Munzinger, J. Wambach, Rev. Mod. Phys. 81, 1031 (2009)

    Article  ADS  Google Scholar 

  3. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature 443, 675 (2006)

    Article  ADS  Google Scholar 

  4. A. Bazavov, T. Bhattacharya, M. Cheng, N.H. Christ, C. DeTar, S. Ejiri, S. Gottlieb, R. Gupta et al., Phys. Rev. D 80, 014504 (2009)

    Article  ADS  Google Scholar 

  5. A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H.T. Ding, S. Gottlieb, R. Gupta, P. Hegde et al., arXiv:1111.1710 [hep-lat] and in references therein

  6. Z. Fodor, S.D. Katz, Phys. Lett. B 534, 87 (2002)

    Article  ADS  MATH  Google Scholar 

  7. M. D’Elia, M.-P. Lombardo, Phys. Rev. D 67, 014505 (2003)

    Article  ADS  Google Scholar 

  8. G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, J. High Energy Phys. 1104, 001 (2011)

    Article  ADS  Google Scholar 

  9. O. Philipsen, arXiv:1111.5370 [hep-ph]

  10. P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989)

    Article  ADS  Google Scholar 

  11. V. Koch, nucl-th/9512029

  12. M. Buballa, Phys. Rep. 407, 205 (2005)

    Article  ADS  Google Scholar 

  13. D. Muller, M. Buballa, J. Wambach, Phys. Rev. D 81, 094022 (2010)

    Article  ADS  Google Scholar 

  14. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). [Int. J. Theor. Phys. 38, 1113 (1999)]

    MathSciNet  ADS  MATH  Google Scholar 

  15. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)

    MathSciNet  ADS  MATH  Google Scholar 

  17. A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006)

    Article  ADS  Google Scholar 

  18. O. Andreev, Phys. Rev. D 73, 107901 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  19. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers, R.M. Thomson, J. High Energy Phys. 0702, 016 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Iatrakis, E. Kiritsis, A. Paredes, J. High Energy Phys. 1011, 123 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  21. P. Colangelo, F. De Fazio, F. Giannuzzi, F. Jugeau, S. Nicotri, Phys. Rev. D 78, 055009 (2008)

    Article  ADS  Google Scholar 

  22. J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005)

    Article  ADS  Google Scholar 

  23. O. Andreev, V.I. Zakharov, Phys. Rev. D 74, 025023 (2006)

    Article  ADS  Google Scholar 

  24. L. Da Rold, A. Pomarol, Nucl. Phys. B 721, 79 (2005)

    Article  ADS  MATH  Google Scholar 

  25. D.T. Son, M.A. Stephanov, Phys. Rev. D 69, 065020 (2004)

    Article  ADS  Google Scholar 

  26. J. Hirn, V. Sanz, J. High Energy Phys. 0512, 030 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  27. P. Colangelo, F. De Fazio, J.J. Sanz-Cillero, F. Giannuzzi, S. Nicotri, Phys. Rev. D 85, 035013 (2012)

    Article  ADS  Google Scholar 

  28. S.K. Domokos, J.A. Harvey, A.B. Royston, J. High Energy Phys. 1105, 107 (2011)

    Article  ADS  Google Scholar 

  29. R. Alvares, C. Hoyos, A. Karch, Phys. Rev. D 84, 095020 (2011)

    Article  ADS  Google Scholar 

  30. I.R. Klebanov, E. Witten, Nucl. Phys. B 556, 89 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. A. Cherman, T.D. Cohen, E.S. Werbos, Phys. Rev. C 79, 045203 (2009)

    Article  ADS  Google Scholar 

  32. K. Ghoroku, M. Yahiro, Phys. Rev. D 73, 125010 (2006)

    Article  ADS  Google Scholar 

  33. Y. Kim, B.-H. Lee, S. Nam, C. Park, S.-J. Sin, Phys. Rev. D 76, 086003 (2007)

    Article  ADS  Google Scholar 

  34. T. Gherghetta, J.I. Kapusta, T.M. Kelley, Phys. Rev. D 79, 076003 (2009)

    Article  ADS  Google Scholar 

  35. S.S. Afonin, Phys. Rev. C 83, 048202 (2011)

    Article  ADS  Google Scholar 

  36. C.A. Dominguez, M. Loewe, J.C. Rojas, J. High Energy Phys. 0708, 040 (2007)

    Article  ADS  Google Scholar 

  37. M. Blank, A. Krassnigg, Phys. Rev. D 82, 034006 (2010)

    Article  ADS  Google Scholar 

  38. A.M. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov, J.J.M. Verbaarschot, Phys. Rev. D 58, 096007 (1998)

    Article  ADS  Google Scholar 

  39. D. Huang, Y.-L. Wu, arXiv:1110.4491 [hep-ph]

  40. S. Borsanyi et al. (Wuppertal–Budapest Collaboration), J. High Energy Phys. 1009, 073 (2010)

    Article  ADS  Google Scholar 

  41. C.P. Herzog, Phys. Rev. Lett. 98, 091601 (2007)

    Article  ADS  Google Scholar 

  42. O. Andreev, V.I. Zakharov, Phys. Lett. B 645, 437 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  43. M. Fujita, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 80, 035001 (2009)

    Article  ADS  Google Scholar 

  44. P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 80, 094019 (2009)

    Article  ADS  Google Scholar 

  45. P. Colangelo, F. Giannuzzi, S. Nicotri, J. High Energy Phys. 1205, 076 (2012)

    Article  ADS  Google Scholar 

  46. M. Fujita, T. Kikuchi, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 81, 065024 (2010)

    Article  ADS  Google Scholar 

  47. P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 83, 035015 (2011)

    Article  ADS  Google Scholar 

  48. K. Jo, B.-H. Lee, C. Park, S.-J. Sin, J. High Energy Phys. 1006, 022 (2010)

    Article  ADS  Google Scholar 

  49. B.-H. Lee, C. Park, S.-J. Sin, J. High Energy Phys. 0907, 087 (2009)

    Article  ADS  Google Scholar 

  50. A. Barducci, R. Casalbuoni, G. Pettini, R. Gatto, Phys. Rev. D 49, 426 (1994)

    Article  ADS  Google Scholar 

  51. S.-J. Sin, J. High Energy Phys. 0710, 078 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. De Fazio and F. Jugeau for helpful discussions and collaboration in the early stage of this work. This work is supported in part by the Italian MIUR PRIN 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Nicotri.

Appendix

Appendix

A proportionality between the coefficient σ(T) and the chiral condensate is found here, showing that all the temperature dependence of \(\langle\bar{q} q\rangle\) is contained in σ(T), while the coefficient of proportionality is temperature-independent and ensures a correct scaling of quantities with the number of colours. The chiral condensate can be computed within holographic approaches through the relation

(A.1)

being \(\langle J_{S}^{0} \rangle\) the vacuum expectation value of the quark scalar current. In order to evaluate this quantity, let us consider the on-shell action for the scalar field

(A.2)

where

(A.3)

X 0(z) is the expectation value we have considered in this paper, π is the chiral field, and S(x,z) is the fluctuation describing scalar mesons [21]:

(A.4)

S(xy,z) being the bulk-to-boundary propagator and \(S_{0}^{a}\) the source, according to the holographic dictionary [16]; T a (a=1,…,8) are the Gell-Mann matrices and \(T^{0}=\mathbf{1}/\sqrt{2n_{f}}\). Then in the holographic model the following relation holds:

(A.5)

and, in the Fourier space, defining

(A.6)

the vev of the scalar current reads

(A.7)

where the prime indicates a derivative with respect to z. At finite temperature and for low values of the fifth coordinate z, the scalar field \(\tilde{S}(q,z)\) can be written as

(A.8)

where we have used the boundary condition \(\tilde{S}(q,z)/ z \stackrel{z\to0}{\rightarrow} 1\), and A(T) and B(T) are coefficients we do not need to specify for the scope of the calculation. The low-z behaviour of X 0 is

(A.9)

where only σ(T) depends on the temperature, as shown in the paper. Plugging (A.8) and (A.9) into (A.7), we find the proportionality relation between the coefficient σ(T) and the chiral condensateFootnote 8

(A.10)

provided σ(T) is finite in this limit. This result shows that the temperature dependence of the chiral condensate is only governed by σ(T), the proportionality coefficient N c /(4π 2) not depending on T. It is worth stressing that such a coefficient ensures the correct scaling of all the quantities involved in Eq. (A.9) with N c . This solves the problem of the scaling of the vev with N c pointed out in [31], since all the coefficients in the expansion (A.9) scale as \(N_{c}^{0}\), while \(\langle\bar{q}q\rangle\) scales as N c .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colangelo, P., Giannuzzi, F., Nicotri, S. et al. Temperature and quark density effects on the chiral condensate: an AdS/QCD study. Eur. Phys. J. C 72, 2096 (2012). https://doi.org/10.1140/epjc/s10052-012-2096-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2096-9

Keywords

Navigation