Skip to main content
Log in

Holographic Λ(t)CDM model in a non-flat universe

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The holographic Λ(t)CDM model in a non-flat universe is studied in this paper. In this model, to keep the form of the stress-energy of the vacuum required by general covariance, the holographic vacuum is enforced to exchange energy with dark matter. It is demonstrated that for the holographic model the best choice for the IR cutoff of the effective quantum field theory is the event horizon size of the universe. We derive the evolution equations of the holographic Λ(t)CDM model in a non-flat universe. We constrain the model by using the current observational data, including the 557 Union2 type Ia supernovae data, the cosmic microwave background anisotropy data from the 7-yr WMAP, and the baryon acoustic oscillation data from the SDSS. Our fit results show that the holographic Λ(t)CDM model tends to favor a spatially closed universe (the best-fit value of Ω k0 is −0.042), and the 95 % confidence level range for the spatial curvature is −0.101<Ω k0<0.040. We show that the interaction between the holographic vacuum and dark matter induces an energy flow of which the direction is first from vacuum to dark matter and then from dark matter to vacuum. Thus, the holographic Λ(t)CDM model is just a time-varying vacuum energy scenario in which the interaction between vacuum and dark matter changes sign during the expansion of the universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J. Frieman, M. Turner, D. Huterer, Annu. Rev. Astron. Astrophys. 46, 385 (2008)

    Article  ADS  Google Scholar 

  4. M. Li, X.D. Li, S. Wang, Y. Wang, Commun. Theor. Phys. 56, 525 (2011)

    Article  ADS  Google Scholar 

  5. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, arXiv:1205.3421

  6. A. Einstein, Sitz.ber. Preuss. Akad. Wiss. Berl. Math. Phys. Kl. 1917, 142 (1917)

    Google Scholar 

  7. E. Komatsu et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  8. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. V. Sahni, A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  10. S.M. Carroll, Living Rev. Relativ. 4, 1 (2001)

    ADS  Google Scholar 

  11. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. M. Li, Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  13. G. ’t Hooft, arXiv:gr-qc/9310026

  14. L. Susskind, J. Math. Phys. 36, 6377 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Phys. Rev. Lett. 82, 4971 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. X. Zhang, Phys. Lett. B 648, 1 (2007)

    Article  ADS  Google Scholar 

  17. X. Zhang, Phys. Rev. D 74, 103505 (2006)

    Article  ADS  Google Scholar 

  18. J. Zhang, X. Zhang, H. Liu, Phys. Lett. B 651, 84 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  19. Y.Z. Ma, X. Zhang, Phys. Lett. B 661, 239 (2008)

    Article  ADS  Google Scholar 

  20. M. Ozer, M.O. Taha, Phys. Lett. B 171, 363 (1986)

    Article  ADS  Google Scholar 

  21. M. Ozer, M.O. Taha, Nucl. Phys. B 287, 776 (1987)

    Article  ADS  Google Scholar 

  22. O. Bertolami, Nuovo Cimento B 93, 36 (1986)

    Article  ADS  Google Scholar 

  23. K. Freese, F.C. Adams, J.A. Frieman, E. Mottola, Nucl. Phys. B 287, 797 (1987)

    Article  ADS  Google Scholar 

  24. P.J.E. Peebles, B. Ratra, Astrophys. J. 325, L17 (1988)

    Article  ADS  Google Scholar 

  25. M.S. Berman, Phys. Rev. D 43, 1075 (1991)

    Article  ADS  Google Scholar 

  26. P. Wang, X.H. Meng, Class. Quantum Gravity 22, 283 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. H.A. Borges, S. Carneiro, Gen. Relativ. Gravit. 37, 1385 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. S. Carneiro, M.A. Dantas, C. Pigozzo, J.S. Alcaniz, Phys. Rev. D 77, 083504 (2008)

    Article  ADS  Google Scholar 

  29. S. Basilakos, M. Plionis, J. Sola, Phys. Rev. D 80, 083511 (2009)

    Article  ADS  Google Scholar 

  30. Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 0408, 013 (2004)

    Article  ADS  Google Scholar 

  31. Q.G. Huang, M. Li, J. Cosmol. Astropart. Phys. 0503, 001 (2005)

    Article  ADS  Google Scholar 

  32. X. Zhang, Int. J. Mod. Phys. D 14, 1597 (2005)

    Article  ADS  MATH  Google Scholar 

  33. J. Zhang, X. Zhang, H. Liu, Eur. Phys. J. C 52, 693 (2007)

    Article  ADS  MATH  Google Scholar 

  34. Y.G. Gong, Phys. Rev. D 70, 064029 (2004)

    Article  ADS  Google Scholar 

  35. B. Wang, E. Abdalla, R.K. Su, Phys. Lett. B 611, 21 (2005)

    Article  ADS  Google Scholar 

  36. X. Wu, R.G. Cai, Z.H. Zhu, Phys. Rev. D 77, 043502 (2008)

    Article  ADS  Google Scholar 

  37. B. Chen, M. Li, Y. Wang, Nucl. Phys. B 774, 256 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. J. Zhang, H. Liu, X. Zhang, Phys. Lett. B 659, 26 (2008)

    Article  ADS  Google Scholar 

  39. M. Li, C. Lin, Y. Wang, J. Cosmol. Astropart. Phys. 0805, 023 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Li, X.D. Li, C. Lin, Y. Wang, Commun. Theor. Phys. 51, 181 (2009)

    Article  ADS  MATH  Google Scholar 

  41. S. Nojiri, S.D. Odintsov, Gen. Relativ. Gravit. 38, 1285 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. X. Zhang, Phys. Lett. B 683, 81 (2010)

    Article  ADS  Google Scholar 

  43. X. Zhang, F.Q. Wu, Phys. Rev. D 72, 043524 (2005)

    Article  ADS  Google Scholar 

  44. X. Zhang, F.Q. Wu, Phys. Rev. D 76, 023502 (2007)

    Article  ADS  Google Scholar 

  45. Q.G. Huang, Y.G. Gong, J. Cosmol. Astropart. Phys. 0408, 006 (2004)

    Article  ADS  Google Scholar 

  46. Z. Chang, F.Q. Wu, X. Zhang, Phys. Lett. B 633, 14 (2006)

    Article  ADS  Google Scholar 

  47. J.Y. Shen, B. Wang, E. Abdalla, R.K. Su, Phys. Lett. B 609, 200 (2005)

    Article  ADS  Google Scholar 

  48. Z.L. Yi, T.J. Zhang, Mod. Phys. Lett. A 22, 41 (2007)

    Article  ADS  Google Scholar 

  49. Y.Z. Ma, Y. Gong, X. Chen, Eur. Phys. J. C 60, 303 (2009)

    Article  ADS  Google Scholar 

  50. M. Li, X.D. Li, S. Wang, Y. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 0912, 014 (2009)

    Article  ADS  Google Scholar 

  51. Z. Zhang, S. Li, X.D. Li, X. Zhang, M. Li, arXiv:1204.6135 [astro-ph.CO]

  52. R.G. Cai, Phys. Lett. B 657, 228 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  53. H. Wei, R.G. Cai, Phys. Lett. B 660, 113 (2008)

    Article  ADS  Google Scholar 

  54. J. Zhang, X. Zhang, H. Liu, Eur. Phys. J. C 54, 303 (2008)

    Article  ADS  Google Scholar 

  55. X.L. Liu, J. Zhang, X. Zhang, Phys. Lett. B 689, 139 (2010)

    Article  ADS  Google Scholar 

  56. Y.H. Li, J.F. Zhang, X. Zhang, arXiv:1201.5446 [gr-qc]

  57. C. Gao, F.Q. Wu, X. Chen, Y.G. Shen, Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  58. X. Zhang, Phys. Rev. D 79, 103509 (2009)

    Article  ADS  Google Scholar 

  59. C.J. Feng, X. Zhang, Phys. Lett. B 680, 399 (2009)

    Article  ADS  Google Scholar 

  60. R.G. Cai, B. Hu, Y. Zhang, Commun. Theor. Phys. 51, 954 (2009)

    Article  ADS  MATH  Google Scholar 

  61. J. Zhang, L. Zhang, X. Zhang, Phys. Lett. B 691, 11 (2010)

    Article  ADS  Google Scholar 

  62. Q.G. Huang, F.L. Lin, arXiv:1201.2443 [hep-th]

  63. M. Li, X.D. Li, S. Wang, X. Zhang, J. Cosmol. Astropart. Phys. 0906, 036 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  64. M. Li, X.D. Li, X. Zhang, Sci. China Phys. Mech. Astron. 53, 1631 (2010)

    Article  ADS  Google Scholar 

  65. Y. Chen, Z.H. Zhu, L. Xu, J.S. Alcaniz, Phys. Lett. B 698, 175 (2011)

    Article  ADS  Google Scholar 

  66. Z.X. Zhai, T.J. Zhang, W.B. Liu, J. Cosmol. Astropart. Phys. 1108, 019 (2011)

    Article  ADS  Google Scholar 

  67. R. Amanullah et al., Astrophys. J. 716, 712 (2010)

    Article  ADS  Google Scholar 

  68. S. Nesseris, L. Perivolaropoulos, Phys. Rev. D 72, 123519 (2005)

    Article  ADS  Google Scholar 

  69. L. Perivolaropoulos, Phys. Rev. D 71, 063503 (2005)

    Article  ADS  Google Scholar 

  70. S. Nesseris, L. Perivolaropoulos, J. Cosmol. Astropart. Phys. 0702, 025 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  71. Y. Wang, P. Mukherjee, Astrophys. J. 650, 1 (2006)

    Article  ADS  Google Scholar 

  72. J.R. Bond, G. Efstathiou, M. Tegmark, Mon. Not. R. Astron. Soc. 291, L33 (1997)

    ADS  Google Scholar 

  73. M. Tegmark et al. (SDSS Collaboration), Astrophys. J. 606, 702 (2004)

    Article  ADS  Google Scholar 

  74. M. Tegmark et al. (SDSS Collaboration), Phys. Rev. D 74, 123507 (2006)

    Article  ADS  Google Scholar 

  75. D.J. Eisenstein et al. (SDSS Collaboration), Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  76. Y.H. Li, X. Zhang, Eur. Phys. J. C 71, 1700 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant Nos. 10705041, 10975032, 11047112 and 11175042, and by the National Ministry of Education of China under Grant Nos. NCET-09-0276, N100505001, N090305003, and N110405011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JF., Li, YY., Liu, Y. et al. Holographic Λ(t)CDM model in a non-flat universe. Eur. Phys. J. C 72, 2077 (2012). https://doi.org/10.1140/epjc/s10052-012-2077-z

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-2077-z

Keywords

Navigation