Skip to main content
Log in

T-duality for string in Hořava–Lifshitz gravity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We continue our study of the Lorentz-breaking string theories. These theories are defined as string theory with modified Hamiltonian constraint which breaks the Lorentz symmetry of target space-time. We analyze the properties of this theory in the target space-time that possesses isometry along one direction. We also derive the T-duality rules for Lorentz-breaking string theories and show that they are the same as that of Buscher’s T-duality for the relativistic strings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Horava, Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009). arXiv:0901.3775 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  2. P. Horava, Membranes at quantum criticality. J. High Energy Phys. 0903, 020 (2009). arXiv:0812.4287 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Horava, Quantum criticality and Yang-Mills gauge theory. arXiv:0811.2217 [hep-th]

  4. J.Z. Tang, B. Chen, Static spherically symmetric solutions to modified Horava–Lifshitz gravity with projectability condition. arXiv:0909.4127 [hep-th]

  5. C.G. Boehmer, F.S.N. Lobo, Stability of the Einstein static universe in IR modified Hořava gravity. arXiv:0909.3986 [gr-qc]

  6. G. Leon, E.N. Saridakis, Phase-space analysis of Horava–Lifshitz cosmology. arXiv:0909.3571 [hep-th]

  7. D. Blas, O. Pujolas, S. Sibiryakov, A healthy extension of Horava gravity. arXiv:0909.3525 [hep-th]

  8. P. Wu, H.W. Yu, Stability of the Einstein static universe in Hořava–Lifshitz gravity. arXiv:0909.2821 [gr-qc]

  9. L. Iorio, M.L. Ruggiero, Horava–Lifshitz gravity and solar system orbital motions. arXiv:0909.2562 [gr-qc]

  10. S. Carloni, E. Elizalde, P.J. Silva, An analysis of the phase space of Horava–Lifshitz cosmologies. arXiv:0909.2219 [hep-th]

  11. H.W. Lee, Y.W. Kim, Y.S. Myung, Extremal black holes in the Hořava–Lifshitz gravity. arXiv:0907.3568 [hep-th]

  12. J. Kluson, Horava–Lifshitz f(R) gravity. arXiv:0907.3566 [hep-th]

  13. J.J. Peng, S.Q. Wu, Hawking radiation of black holes in infrared modified Hořava–Lifshitz gravity. arXiv:0906.5121 [hep-th]

  14. S. Mukohyama, Caustic avoidance in Horava–Lifshitz gravity. J. Cosmol. Astropart. Phys. 0909, 005 (2009). arXiv:0906.5069 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Blas, O. Pujolas, S. Sibiryakov, On the extra mode and inconsistency of Horava gravity. J. High Energy Phys. 0910, 029 (2009). arXiv:0906.3046 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  16. C. Germani, A. Kehagias, K. Sfetsos, Relativistic quantum gravity at a Lifshitz point. J. High Energy Phys. 0909, 060 (2009). arXiv:0906.1201 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  17. M.I. Park, The black hole and cosmological solutions in IR modified Horava gravity. J. High Energy Phys. 0909, 123 (2009). arXiv:0905.4480 [hep-th]

    Article  ADS  Google Scholar 

  18. M. Sakamoto, Strong coupling quantum Einstein gravity at a z=2 Lifshitz point. Phys. Rev. D 79, 124038 (2009). arXiv:0905.4326 [hep-th]

    Article  ADS  Google Scholar 

  19. G. Calcagni, Detailed balance in Horava–Lifshitz gravity. arXiv:0905.3740 [hep-th]

  20. S. Mukohyama, Dark matter as integration constant in Horava–Lifshitz gravity. Phys. Rev. D 80, 064005 (2009). arXiv:0905.3563 [hep-th]

    Article  ADS  Google Scholar 

  21. X. Gao, Y. Wang, R. Brandenberger, A. Riotto, Cosmological perturbations in Hořava–Lifshitz gravity. arXiv:0905.3821 [hep-th]

  22. Y.W. Kim, H.W. Lee, Y.S. Myung, Nonpropagation of scalar in the deformed Hořava–Lifshitz gravity. arXiv:0905.3423 [hep-th]

  23. T.P. Sotiriou, M. Visser, S. Weinfurtner, Quantum gravity without Lorentz invariance. J. High Energy Phys. 0910, 033 (2009). arXiv:0905.2798 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Li, Y. Pang, A trouble with Hořava–Lifshitz gravity. J. High Energy Phys. 0908, 015 (2009). arXiv:0905.2751 [hep-th]

    MathSciNet  ADS  Google Scholar 

  25. R.G. Cai, B. Hu, H.B. Zhang, Dynamical scalar degree of freedom in Horava–Lifshitz gravity. Phys. Rev. D 80, 041501 (2009). arXiv:0905.0255 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Mukohyama, K. Nakayama, F. Takahashi, S. Yokoyama, Phenomenological aspects of Horava–Lifshitz cosmology. Phys. Lett. B 679, 6 (2009). arXiv:0905.0055 [hep-th]

    Article  ADS  Google Scholar 

  27. T.P. Sotiriou, M. Visser, S. Weinfurtner, Phenomenologically viable Lorentz-violating quantum gravity. Phys. Rev. Lett. 102, 251601 (2009). arXiv:0904.4464 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  28. X. Gao, Cosmological perturbations and non-Gaussianities in Hořava–Lifshitz gravity. arXiv:0904.4187 [hep-th]

  29. H. Nastase, On IR solutions in Horava gravity theories. arXiv:0904.3604 [hep-th]

  30. R. Brandenberger, Matter bounce in Horava–Lifshitz cosmology. Phys. Rev. D 80, 043516 (2009). arXiv:0904.2835 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Mukohyama, Scale-invariant cosmological perturbations from Horava–Lifshitz gravity without inflation. J. Cosmol. Astropart. Phys. 0906, 001 (2009). arXiv:0904.2190 [hep-th]

    Article  ADS  Google Scholar 

  32. H. Lu, J. Mei, C.N. Pope, Solutions to Horava gravity. Phys. Rev. Lett. 103, 091301 (2009). arXiv:0904.1595 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  33. J. Kluson, Branes at quantum criticality. J. High Energy Phys. 0907, 079 (2009). arXiv:0904.1343 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  34. E. Kiritsis, G. Kofinas, Horava–Lifshitz cosmology. Nucl. Phys. B 821, 467 (2009). arXiv:0904.1334 [hep-th]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. G. Calcagni, Cosmology of the Lifshitz universe. J. High Energy Phys. 0909, 112 (2009). arXiv:0904.0829 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  36. T. Takahashi, J. Soda, Chiral primordial gravitational waves from a Lifshitz point. Phys. Rev. Lett. 102, 231301 (2009). arXiv:0904.0554 [hep-th]

    Article  ADS  Google Scholar 

  37. M. Visser, Lorentz symmetry breaking as a quantum field theory regulator. Phys. Rev. D 80, 025011 (2009). arXiv:0902.0590 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  38. E.N. Saridakis, Horava–Lifshitz dark energy. arXiv:0905.3532 [hep-th]

  39. C. Bogdanos, E.N. Saridakis, Perturbative instabilities in Horava gravity. arXiv:0907.1636 [hep-th]

  40. Y.F. Cai, E.N. Saridakis, Non-singular cosmology in a model of non-relativistic gravity. arXiv:0906.1789 [hep-th]

  41. S.K. Chakrabarti, E.N. Saridakis, A.A. Sen, A new approach to modified-gravity models. arXiv:0908.0293 [astro-ph.CO]

  42. T. Jacobson, Extended Horava gravity and Einstein-aether theory. arXiv:1001.4823 [hep-th]

  43. M. Henneaux, A. Kleinschmidt, G.L. Gomez, A dynamical inconsistency of Horava gravity. arXiv:0912.0399 [hep-th]

  44. E. Kiritsis, Spherically symmetric solutions in modified Horava–Lifshitz gravity. arXiv:0911.3164 [hep-th]

  45. J. Kluson, New models of f(R) theories of gravity. arXiv:0910.5852 [hep-th]

  46. R.G. Cai, A. Wang, Singularities in Horava–Lifshitz theory. arXiv:1001.0155 [hep-th]

  47. A. Ghodsi, E. Hatefi, Extremal rotating solutions in Horava gravity. arXiv:0906.1237 [hep-th]

  48. A. Kobakhidze, On the infrared limit of Horava’s gravity with the global Hamiltonian constraint. arXiv:0906.5401 [hep-th]

  49. E.O. Colgain, H. Yavartanoo, Dyonic solution of Horava–Lifshitz gravity. J. High Energy Phys. 0908, 021 (2009). arXiv:0904.4357 [hep-th]

    Article  ADS  Google Scholar 

  50. A. Ghodsi, Toroidal solutions in Horava gravity. arXiv:0905.0836 [hep-th]

  51. J. Kluson, String in Horava–Lifshitz gravity. arXiv:1002.2849 [hep-th]

  52. D. Capasso, A.P. Polychronakos, Particle kinematics in Horava–Lifshitz gravity. arXiv:0909.5405 [hep-th]

  53. T.H. Buscher, Quantum corrections and extended supersymmetry in new sigma models. Phys. Lett. B 159, 127 (1985)

    Article  ADS  Google Scholar 

  54. T.H. Buscher, A symmetry of the string background field equations. Phys. Lett. B 194, 59 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  55. T.H. Buscher, Path integral derivation of quantum duality in nonlinear sigma models. Phys. Lett. B 201, 466 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  56. T. Suyama, Notes on matter in Horava–Lifshitz gravity. arXiv:0909.4833 [hep-th]

  57. J.M. Romero, V. Cuesta, J.A. Garcia, J.D. Vergara, Conformal anisotropic mechanics. arXiv:0909.3540 [hep-th]

  58. A.E. Mosaffa, On geodesic motion in Horava–Lifshitz gravity. arXiv:1001.0490 [hep-th]

  59. E. Kiritsis, G. Kofinas, On Horava–Lifshitz black holes. arXiv:0910.5487 [hep-th]

  60. S.K. Rama, Particle motion with Hořava–Lifshitz type dispersion relations. arXiv:0910.0411 [hep-th]

  61. E. Bergshoeff, C.M. Hull, T. Ortin, Duality in the type II superstring effective action. Nucl. Phys. B 451, 547 (1995). arXiv:hep-th/9504081

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. J.C. Breckenridge, G. Michaud, R.C. Myers, More D-brane bound states. Phys. Rev. D 55, 6438 (1997). arXiv:hep-th/9611174

    Article  MathSciNet  ADS  Google Scholar 

  63. S. Nojiri, S.D. Odintsov, A proposal for covariant renormalizable field theory of gravity. Phys. Lett. B 691, 60 (2010). arXiv:1004.3613 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  64. M. Chaichian, S. Nojiri, S.D. Odintsov, M. Oksanen, A. Tureanu, Modified F(R) Horava–Lifshitz gravity: a way to accelerating FRW cosmology. Class. Quantum Gravity 27, 185021 (2010). arXiv:1001.4102 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  65. S. Carloni, M. Chaichian, S. Nojiri, S.D. Odintsov, M. Oksanen, A. Tureanu, Modified first-order Horava–Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in power-law F(R) model. Phys. Rev. D 82, 065020 (2010). arXiv:1003.3925 [hep-th]

    Article  ADS  Google Scholar 

  66. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models. arXiv:1011.0544 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Klusoň.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klusoň, J., Panigrahi, K.L. T-duality for string in Hořava–Lifshitz gravity. Eur. Phys. J. C 71, 1595 (2011). https://doi.org/10.1140/epjc/s10052-011-1595-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1595-4

Keywords

Navigation