Skip to main content
Log in

Measurement of the production of charged pions by protons on a tantalum target

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

A measurement of the double-differential cross-section for the production of charged pions in proton–tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12 GeV/c hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment (100 MeV/c ≤p< 800 MeV/c and 0.35 rad ≤θ< 2.15 rad) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ at four incident proton beam momenta (3 GeV/c, 5 GeV/c, 8 GeV/c and 12 GeV/c). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. HARP Collaboration, M.G. Catanesi et al., Proposal to study hadron production for the neutrino factory and for the atmospheric neutrino flux, CERN-SPSC/99-35 (1999)

  2. G. Battistoni, Nucl. Phys. B Proc. Suppl. 100, 101 (2001)

    Article  ADS  Google Scholar 

  3. T. Stanev, Rapporteur’s talk at the 26th Int. Cosmic Ray Conference (Salt Lake City, Utah, USA), ed. by B.L. Dingus et al., AIP Conf. Proceedings 516, (2000) 247

  4. T.K. Gaisser, Nucl. Phys. B Proc. Suppl. 87, 145 (2000)

    Article  ADS  Google Scholar 

  5. R. Engel, T.K. Gaisser, T. Stanev, Phys. Lett. B 472, 113 (2000)

    Article  ADS  Google Scholar 

  6. M. Honda, Nucl. Phys. B 77, 140 (1999)

    Article  Google Scholar 

  7. K2K Collaboration, M.H. Ahn et al., Phys. Rev. Lett. 90, 041801 (2003)

    Article  Google Scholar 

  8. M.H. Ahn et al., K2K Collaboration, Phys. Rev. D 74, 072003 (2006) [arXiv:hep-ex/0606032]

    Article  ADS  Google Scholar 

  9. BooNe Collaboration, E. Church et al., A proposal for an experiment to measure muon-neutrino → electron-neutrino oscillations and muon-neutrino disappearance at the Fermilab Booster: BooNE, FERMILAB-PROPOSAL-0898, (1997))

  10. BooNE Collaboration, A.A. Aguilar-Arevalo et al., arXiv:0704.1500 (2007)

  11. SciBooNE Collaboration, A.A. Aguilar-Arevalo et al., Bringing the SciBar detector to the Booster neutrino beam, FERMILAB-PROPOSAL-0954, (2006), arXiv:hep-ex/0601022

  12. M. Apollonio et al., Oscillation Physics with a Neutrino Factory, CERN TH2002-208, arXiv:hep-ph/0210192

  13. BENE Steering Group, A. Baldini et al., CERN-2006-005

  14. A. Blondel et al., CERN-2004-002, ECFA/04/230

  15. HARP Collaboration, M.G. Catanesi et al., Nucl. Instrum. Methods A 571, 527 (2007)

    Article  Google Scholar 

  16. HARP Collaboration, M.G. Catanesi et al., Nucl. Instrum. Methods A 571, 564 (2007)

    Article  ADS  Google Scholar 

  17. HARP Collaboration, M.G. Catanesi et al., Nucl. Phys. B 732, 1 (2006) [arXiv:hep-ex/0510039]

    Article  ADS  Google Scholar 

  18. HARP Collaboration, M.G. Catanesi et al., Nucl. Instrum. Methods A 572, 899 (2007)

    Article  Google Scholar 

  19. HARP Collaboration, M.G. Catanesi et al., Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium, arXiv:hep-ex/0702024

  20. M. Anfreville et al., Nucl. Instrum. Methods A 481, 339 (2002)

    Article  ADS  Google Scholar 

  21. NOMAD Collaboration, J. Altegoer et al., Nucl. Instrum. Methods A 404, 96 (1998)

    Article  ADS  Google Scholar 

  22. M. Baldo-Ceolin et al., Nucl. Instrum. Methods A 532, 548 (2004)

    Article  ADS  Google Scholar 

  23. S. Buontempo et al., Nucl. Instrum. Methods A 349, 70 (1994)

    Article  ADS  Google Scholar 

  24. E. Di Capua et al., Nucl. Instrum. Methods A 378, 221 (1996)

    Article  ADS  Google Scholar 

  25. E. Radicioni, IEEE Trans. Nucl. Sci. 52, 2986 (2005), presented at NSS2004

    Article  ADS  Google Scholar 

  26. M. Bogomilov et al., Nucl. Instrum. Methods A 508, 152 (2003)

    Article  ADS  Google Scholar 

  27. G. Barr et al., Nucl. Instrum. Methods A 533, 214 (2004)

    Article  ADS  Google Scholar 

  28. L. Durieu, A. Mueller, M. Martini, PAC-2001-TPAH142, Presented at IEEE Particle Accelerator Conference (PAC2001), Chicago, Illinois, 18–22 Jun 2001

  29. L. Durieu et al., Proceedings of PAC’97, Vancouver (1997)

  30. L. Durieu, O. Fernando, CERN PS/PA Note 96–38

  31. K. Pretzl et al., Invited talk at the International Symposium on Strangeness and Quark Matter, Crete, 230 (1999)

  32. J.W.E. Uiterwijk, J. Panman, B. Van de Vyver, Nucl. Instrum. Methods A 560, 317 (2006)

    Article  ADS  Google Scholar 

  33. J. Knobloch et al., Status of the Reconstruction Algorithms for ALEPH, ALEPH-Note 88–46

  34. M.C. Morone, Evaluation of Silicon sensors for the ATLAS Silicon Tracker, and TPC Reconstruction in the HARP Experiment, Ph.D. Thesis, University of Geneva, 2003

  35. N.I. Chernov, G.A. Ososkov, Comput. Phys. Commun. 33, 329 (1984)

    Article  ADS  Google Scholar 

  36. M. Bogomilov et al., IEEE Trans. Nucl. Sci. 54, 342 (2007)

    Article  ADS  Google Scholar 

  37. GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  38. G. D’Agostini, Nucl. Instrum. Methods A 362, 487 (1995)

    Article  ADS  Google Scholar 

  39. A. Grossheim, Particle production yields induced by multi-GeV protons on nuclear targets, Ph.D. thesis, University of Dortmund, Germany, 2003, CERN-THESIS-2004-010

  40. E910 Collaboration, I. Chemakin et al., Phys. Rev. C 65, 024904 (2002)

    Article  ADS  Google Scholar 

  41. D. Armutliiski et al., Hadron spectra in hadron–nucleus collisions (in Russian), JINR-P1-91-191, 1991

  42. K. Long, Nucl. Phys. B Proc. Suppl. 154, 111 (2006)

    Article  ADS  Google Scholar 

  43. ISS/2005/01, An international scoping study of a Neutrino Factory and super-beam facility, http://www.hep.ph.ic.ac.uk/iss/issnotes/ISS_Doc1_v02_13-7-2005.pdf

  44. R.C. Fernow, J. Gallardo, private communication

  45. S.J. Brooks, private communication

  46. S.J. Brooks, K. A Walaron, Nucl. Phys. B Proc. Suppl. 155, 295 (2006)

    Article  ADS  Google Scholar 

  47. S. Borghi, Hadron production cross section measurement with the HARP large angle detectors, Ph.D. Thesis, N.3781, University of Geneva, Switzerland, 2006, CERN-THESIS-2007-034

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J.J. Gómez-Cadenas.

Additional information

PACS

13.75.Cs; 13.85.Ni

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catanesi, M., Radicioni, E., Edgecock, R. et al. Measurement of the production of charged pions by protons on a tantalum target. Eur. Phys. J. C 51, 787–824 (2007). https://doi.org/10.1140/epjc/s10052-007-0361-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0361-0

Keywords

Navigation