Skip to main content
Log in

First-passage time and change of entropy

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The first-passage time is proposed as an independent thermodynamic parameter of the statistical distribution that generalizes the Gibbs distribution. The theory does not include the determination of the first-passage statistics itself. A random process is set that describes a physical phenomenon. The first-passage statistics is determined from this random process. The thermodynamic parameter conjugated to the first-passage time is the same as the Laplace transform parameter of the first-passage time distribution in the partition function. The corresponding partition function is divided into multipliers, one of which is associated with the equilibrium parameters, and the second one with the parameters of the first-passage time distribution. The thermodynamic parameter conjugated to the first-passage time can be expressed in terms of the deviation of the entropy from the equilibrium value. Thus, all moments of the distribution of the first-passage time are expressed in terms of the deviation of the entropy from its equilibrium value and the external forces acting on the system. By changing the thermodynamic forces, it is possible to change the first-passage time.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data openly available in a public repository, with a permanent identifier arXiv:2109.11823.]

References

  1. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  2. R. Metzler, G. Oshanin, S. Redner (eds.), First-Passage Phenomena and Their Applications (World Scientific, Singapore, 2014)

    MATH  Google Scholar 

  3. J. Masoliver, Random Processes: First-Passage and Escape (World Scientific, Singapore, 2018)

    Book  MATH  Google Scholar 

  4. V.I. Tikhonov, M.A. Mironov, Markov Processes (Soviet Radio, Moskow, 1977). (in Russian)

    MATH  Google Scholar 

  5. C.W. Gardiner, Handbook of Stochastic Methods, 2nd edn. (Springer, Berlin, 1990)

    MATH  Google Scholar 

  6. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1992)

    MATH  Google Scholar 

  7. R.L. Stratonovich, The Elected Questions of the Fluctuations Theory in a Radio Engineering (Gordon and Breach, New York, 1967)

    Google Scholar 

  8. V.V. Ryazanov, S.G. Shpyrko, First-passage time: a conception leading to superstatistics. Condens. Matter Phys. 1(45), 71–80 (2006)

    Article  Google Scholar 

  9. V.V. Ryazanov, First-passage time: a conception leading to superstatistics. I. Superstatistics with discrete distributions (2005). Preprint: physics/0509098

  10. V.V. Ryazanov, First-passage time: a conception leading to superstatistics. II. Continuous distributions and their applications (2005). Preprint: physics/0509099

  11. J.-P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S.B. Yuste, G. Oshanin, K. Lindenberg, O. Bénichou, J. Klafter, Survival probability of a particle in a sea of mobile traps: a tale of tails. Phys. Rev. E 78, 021105 (2008)

    Article  ADS  Google Scholar 

  14. É. Roldán, I. Neri, M. Dörpinghaus, H. Meyer, F. Jülicher, Decision making in the arrow of time. Phys. Rev. Lett. 115, 250602 (2015)

    Article  ADS  Google Scholar 

  15. K. Saito, A. Dhar, Waiting for rare entropic fluctuations. Europhys. Lett. 114, 50004 (2016)

    Article  ADS  Google Scholar 

  16. K. Ptaszynski, First-passage times in renewal and nonrenewal systems. Phys. Rev. E 97, 012127 (2018)

    Article  ADS  Google Scholar 

  17. I. Neri, É. Roldán, F. Jülicher, Statistics of infima and stopping times of entropy production and applications to active molecular processes. Phys. Rev. X 7, 011019 (2017)

    Google Scholar 

  18. T.R. Gingrich, J.M. Horowitz, Fundamental bounds on first passage time fluctuations for currents. Phys. Rev. Lett. 119, 170601 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. J.P. Garrahan, Simple bounds on fluctuations and uncertainty relations for first-passage times of counting observables. Phys. Rev. E 95, 032134 (2017)

    Article  ADS  Google Scholar 

  20. P. Hänggi, P. Talkner, M. Borkovec, Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Longtin, A. Bulsara, F. Moss, Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons. Phys. Rev. Lett. 67, 656–659 (1991)

    Article  ADS  Google Scholar 

  22. H.C. Tuckwell, Introduction to Theoretical Neurobiology, vol. 2 (Cambridge University Press, Cambridge, 1988)

    Book  MATH  Google Scholar 

  23. A. Molini, P. Talkner, G.G. Katul, A. Porporato, First passage time statistics of Brownian motion with purely time dependent drift and diffusion. Phys. A 390, 1841–1852 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Bouchet, J. Reygner, Generalisation of the Eyring-Kramers Transition Rate Formula to Irreversible Diffusion Processes. Ann. Henri Poincar’e 17, 3499–3532 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. R.S. Maier, D.L. Stein, Limiting exit location distributions in the stochastic exit problem. SIAM J. Appl. Math. 57(3), 752–790 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Masoliver, J. Perell, First-passage and escape problems in the Feller process. Phys. Rev. E 86, 041116 (2012)

    Article  ADS  Google Scholar 

  27. M.V. Day, Recent progress on the small parameter exit problem. Stochastics 20, 121–150 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Hartich, A. Godec, Duality between relaxation and first passage in reversible Markov dynamics: rugged energy landscapes disentangled. New J. Phys. 20, 112002 (2018)

    Article  ADS  Google Scholar 

  29. D. Hartich, A. Godec, Interlacing relaxation and first-passage phenomena in reversible discrete and continuous space Markovian dynamics. J. Stat. Mech. Theory Exp. 2019(2), 024002 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Godec, R. Metzler, Universal proximity effect in target search kinetics in the few-encounter limit. Phys. Rev. X 6, 041037 (2016)

    Google Scholar 

  31. S.D. Lawley, Universal formula for extreme first passage statistics of diffusion. Phys. Rev. E 101, 012413 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. S.D. Lawley, Distribution of extreme first passage times of diffusion. J. Math. Biol. 80(7), 2301–2325 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. J.B. Madrid, S.D. Lawley, Competition between slow and fast regimes for extreme first passage times of diffusion. J. Phys. A Math. Theor. 53(33), 500243 (2020)

    Article  MathSciNet  Google Scholar 

  34. S.D. Lawley, J.B. Madrid, First passage time distribution of multiple impatient particles with reversible binding. J. Chem. Phys. 150(21), 214113 (2019)

    Article  ADS  Google Scholar 

  35. D. Hartich, A. Godec, Extreme value statistics of ergodic Markov processes from first passage times in the large deviation limit. J. Phys. A Math. Theor. 52, 244001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  36. D.S. Grebenkov et al., New trends in first-passage methods and applications in the life sciences and engineering. J. Phys. A:Math. Theor. 53, 190301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. C. Hartmann, R. Banisch, M. Sarich, T. Badowski, C. Schutte, Characterization of rare events in molecular dynamics. Entropy 16, 350–376 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. K.R. Ghusingaa, J.J. Dennehyb, A. Singh, First-passage time approach to controlling noise in the timing of intracellular events. Proc. Natl. Acad. Sci. USA PNAS 114, 693–698 (2017)

    Article  Google Scholar 

  39. B. Lindner, Moments of the first passage time under external driving. J. Stat. Phys. 117(3/4) (2004)

  40. A. Godec, R. Metzler, First passage time distribution in heterogeneity controlled kinetics: going beyond the mean first passage time. Sci. Rep. 6, 20349 (2016)

    Article  ADS  Google Scholar 

  41. V.V. Ryazanov, Non-equilibrium thermodynamics with thermodynamic parameter of lifetime of system. I. arXiv:1910.05128

  42. V.V. Ryazanov, Non-equilibrium thermodynamics with first-passage time of states as independent thermodynamic parameter. arXiv:2003.08307

  43. V.V. Ryazanov, Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics. Eur. Phys. J. B 72, 629–639 (2009)

    Article  ADS  Google Scholar 

  44. D. Jou, J. Casas-Vazquez, G. Lebon, Extended Irreversible Thermodynamics (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  45. J.M. Horowitz, M. Esposito, Work producing reservoirs: Stochastic thermodynamics with generalized Gibbs ensembles. Phys. Rev. E 94, 020102 (2016)

    Article  ADS  Google Scholar 

  46. Du. Xin, Eric R. Weeks, Energy barriers, entropy barriers, and non-Arrhenius behavior in a minimal glassy model. Phys. Rev. E 93, 062613 (2016)

    Article  ADS  Google Scholar 

  47. V.V. Ryazanov, Non-equilibrium thermodynamics with thermodynamic parameter of lifetime of system. II. Possibilities of increasing lifetime, arXiv:1910.08075

  48. I. Prigogine, From Being to Becoming (Freeman and Company, New York, 1980)

    Google Scholar 

  49. I. Neri, Second law of thermodynamics at stopping times. Phys. Rev. Lett. 124, 040601 (2020)

    Article  ADS  Google Scholar 

  50. I. Neri, Dissipation bounds the moments of first-passage times of dissipative currents in non-equilibrium stationary states. arXiv:2103.15007v1

  51. Y. Zhang, Entropy production related properties of first passage process. arXiv:2108.00121 [cond-mat.stat-mech]

  52. N.N. Bogoliubov, in Studies in Statistical Mechanics I edited by J. de Boer, G.E. Uhlenbeck, (North-Holland, Amsterdam, 1962), p. 4–118

  53. M.A. Leontovich, Introduction to Thermodynamics. Statistical Physics (Nauka, Moscow, 1985). (in Russian)

  54. R.L. Stratonovich, Nonlinear Non-equilibrium Thermodynamics (Springer, Heidelberg, 1992)

    MATH  Google Scholar 

  55. D.N. Zubarev, Non-equilibrium Statistical Thermodynamics (Plenum-Consultants Bureau, New York, 1974)

    Google Scholar 

  56. D.N. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Non-equilibrium Processes: Basic Concepts, Kinetic Theory, vol. 1 (Akademie-Wiley VCH, Berlin, 1996)

    MATH  Google Scholar 

  57. D.N. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Non-equilibrium Processes: Relaxation and Hydrodynamic Processes, vol. 2 (Akademie-Wiley VCH, Berlin, 1997)

    MATH  Google Scholar 

  58. I.I. Gichman, A.V. Skorochod, The Theory of Stochastic Processes. II (Springer, New York, 1974)

    Google Scholar 

  59. A.N. Shiryaev, Statistical Sequential Analysis (American Mathematical Society, Providence, 1973)

    MATH  Google Scholar 

  60. D.N. Zubarev, in Reviews of Science and Technology: Modern Problems of Mathematics, edited by R.B. Gamkrelidze, vol. 15, p. 131–226 (in Russian) (Izd. Nauka, Moscow, 1980) [English Transl.: J. Soviet Math. 16, 1509 (1981)]

  61. G. Röpke, Nonequilibrium Statistical Physics (Wiley-VCH, New York, 2013)

    Book  MATH  Google Scholar 

  62. J.G. Ramos, Á.R. Vasconcellos, R. Luzzi, A nonequilibrium ensemble formalism: criterion for truncation of description. J. Chem. Phys. 112, 2692 (2000)

    Article  ADS  Google Scholar 

  63. R. Luzzi, A.R. Vasconcellos, J.G. Ramos, et al., Statistical irreversible thermodynamics in the framework of Zubarev’s non-equilibrium statistical operator method. Theor. Math. Phys. 194, 1–37 (2018)

  64. V.V. Ryazanov, Lifetime of system and non-equilibrium statistical operator method. Fortschritte der Phusik/Progr. Phys. 49, 885–893 (2001)

    Article  ADS  MATH  Google Scholar 

  65. W. Feller, An Introduction to Probability Theory and its Applications, vol. 2 (Wiley, New York, 1971)

    MATH  Google Scholar 

  66. V.V. Ryazanov, Nonequilibrium statistical operator for systems with finite lifetime. Fizika Nizkikh Temperatur 33(9), 1049–1051 (2007)

    Google Scholar 

  67. Y. Klimontovich, Statistical Physics (Harwood-Academic Publishers, New York, 1986)

  68. F.M. Kuni, Statistical Physics and Thermodynamics (Nauka, Moskow, 1981). (in Russian)

  69. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev 106(4), 620–630 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. H.G. Schuster, W. Just, Deterministic Chaos, An Introduction (WILEY-VCH Verlag GmbH & Co, Weinheim, 2005)

    Book  MATH  Google Scholar 

  71. Yu.G. Rudoi, A.D. Sukhanov, Thermodynamic fluctuations in the Gibbs and Einstein approaches. Phys. Usp. 43(12), 1169–1199 (2000)

    Article  ADS  Google Scholar 

  72. I.N. Sanov, On the probabilities of large deviations of random variables, Mat. Sb. 42, 70–95 (1957); English translation in Sel. Transl. Math. Prob. 1, 213–224, (1961)

  73. N.N. Centsov, Statistical decision rules and optimal inference, Amer. Math. Soc. (1982) (Translated from Russian)

  74. I. Csiszár, Sanov property, generalized I: projection and a conditional limit theorem. Ann. Probab. 12(3), 768–793 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  75. J.A. McLennan, Introduction to Non-equilibrium Statistical Mechanics (Prentice Hall, New Jersey, 1989)

  76. A.I. Olemskoi, A.Ya. Flat, Application of fractals in condensed-matter physics. Phys. Usp. 36(12), 1087–1128 (1993)

  77. J.P. Bouchaud, L.F. Gudliandolo, J. Kurchan, Spin Glasses and Random Fields edited by A.P. Young (Singapore: World Scientific, 1998)

  78. S.F. Edwards, Granular Matter: An Interdisciplinary Approach edited by A. Metha (Springer, New York, 1994)

  79. J.R. Dorfman, P. Gaspard, Chaotic scattering theory of transport and reaction-rate coefficients. Phys. Rev. E. 51, 28–33 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  80. P. Gaspard, What is the role of chaotic scattering in irreversible processes? Chaos 3, 427–442 (1993)

    Article  ADS  Google Scholar 

  81. P. Gaspard, J.R. Dorfman, Chaotic scattering theory, thermodynamic formalism and transport coefficients. Phys. Rev. E 52, 3525–3552 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  82. D.S. Grebenkov, First exit times of harmonically trapped particles: a didactic review. J. Phys. A Math. Theor. 48, 013001 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. S. Singh, P. Menczel, D.S. Golubev, I.M. Khaymovich, J.T. Peltonen, C. Flindt, K. Saito, É. Roldán, J.P. Pekola, Universal first-passage-time distribution of non-Gaussian currents. Phys. Rev. Lett. 122(23), 230602 (2019)

    Article  ADS  Google Scholar 

  84. L. Sacerdote, M. Tamborrino, C. Zucca, First passage times of two-dimensional correlated processes: analytical results for the Wiener process and a numerical method for diffusion processes. arXiv:1212.5287v5

  85. E. Ben-Naim, P.L. Krapivsky, Kinetics of first passage in a cone. J. Phys. A 43, 495007 (2010). arXiv:1009.0238 LA-UR 10-05319

  86. J. Shao, X. Wang, Estimates of the exit probability for two correlated Brownian motions. Adv. Appl. Probab. 45, 37–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  87. Yu.L. Klimontovich, Statistical Theory of Open Systems (Kluwer Acad. Publ, Dordrecht, 1995)

    Book  MATH  Google Scholar 

  88. S. Sato, J. Inoue, Inverse gaussian distribution and its application (part III: fundamental electronic science). Electron. Commun. Jpn. 77(1), 32–42 (1994)

    Article  Google Scholar 

  89. V.V. Ryazanov, Neutron energy distribution in a nuclear reactor taking account of the finiteness of the neutron lifetime. Atom. Energy 99, 782–786 (2005)

    Article  Google Scholar 

  90. V.V. Ryazanov, Statistical theory of evaporation and condensation processes in liquid droplets. Colloid J. 68, 217–227 (2006)

  91. V.V. Ryazanov, Simulation of micelles conduct using stochastic model of storage. Mat. Mod. 28(1), 47–64 (2016)

  92. V.V. Ryazanov, Stochastic model of domain kinetics in biological membranes. Biochem. (Moscow) Suppl. Ser. A Membr. Cell Biol. 10, 109–11 (2016)

    Article  Google Scholar 

  93. V.V. Ryazanov, Impact of external influences on characteristics of domains in biological membranes. Biochem. (Moscow) Suppl. Ser. A Membr. Cell Biol. 11, 115–129 (2017)

    Article  Google Scholar 

  94. V.V. Ryazanov, The dynamic behavior possibilities of raft-like domains in biological membranes. Biochem. (Moscow) Suppl. Ser. A Membr. Cell Biol. 12(2), 160–169 (2018)

    Article  Google Scholar 

  95. V.V. Ryazanov, Lifetime of nonequilibrium aerosol systems. J. Aerosol Sci. 32(Suppl. 1), S541–S542 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  96. V.V. Ryazanov, Superstatistics and lifetime. Am. J. Math. Stat. 2, 49–56 (2012)

    Article  Google Scholar 

  97. V.V. Ryazanov, Nonequilibrium thermodynamics based on the distributions containing lifetime as thermodynamic parameter. J. Thermodyn. 2011, 203203 (2011)

    Article  Google Scholar 

  98. V.V. Ryazanov, Nonequilibrium thermodynamics and distributions time to achieve a given level of a stochastic process for energy of system. J. Thermodyn. 2012, 318032 (2012)

    Article  Google Scholar 

  99. V.V. Ryazanov, Neutron number first-passage time distribution and the reactor time constant. At. Energy 110, 376–386 (2011)

  100. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

    MATH  Google Scholar 

  101. S. Singh, É. Roldán, I. Neri, I.M. Khaymovich, D.S. Golubev, V.F. Maisi, J.T. Peltonen, F. Jülicher, J.P. Pekola, Extreme reductions of entropy in an electronic double dot. Phys. Rev. B 99, 115422 (2019). arXiv:1712.01693

    Article  ADS  Google Scholar 

  102. N.U. Prabhu, Queues and Inventories (Wiley, New York, 1965)

    MATH  Google Scholar 

  103. S.G. Shpyrko, V.V. Ryazanov, Stochastic storage model and noise-induced phase transitions. Eur. Phys J. B 54, 345–354 (2006)

    Article  ADS  Google Scholar 

  104. C. Beck, E.G.D. Cohen, Superstatistics. Phys. A 322A, 267 (2003). arXiv:cond-mat/0205097

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. B.H. Lavenda, J. Dunning-Davies, Qualms regarding Superstatistics by C. Beck and E. G. D. Cohen. Phys. A (2003) 321 (cond-mat/0205097), Preprint cond-mat/0311271 (2003)

Download references

Author information

Authors and Affiliations

Authors

Appendix A: Feller process: possibility of increasing the average FPT

Appendix A: Feller process: possibility of increasing the average FPT

The described approach is applicable to multiple problems with FPT concept. For example, in [82], using FPTs, problems such as the thermal motion of a small tracer in a viscous medium, adhesion bond dissociation under mechanical stress, algorithmic trading, first crossing of a moving boundary by Brownian motion, and quadratic double-well potential are considered. In [82], the random variable \(\tau =\mathrm{{inf}}\{ t> a: X(t)> L\}\) was considered, describing the first exit time of a stochastic process X(t) outside from the interval [-L, L] with starting point\( x_{0}\) at \(t_{0}=\)0. The expression for the Laplace transform of the FPT distribution used in [82] is more complicated than (19) and has the form

$$\begin{aligned} Z_{\gamma } (r_{0} ,\gamma )=\frac{U(\frac{\gamma L^{2}}{4\kappa D},\frac{d}{2},\kappa \frac{r_{0}^{2}}{L^{2}})}{U(\frac{\gamma L^{2}}{4\kappa D},\frac{d}{2},\kappa )}\frac{U(0,\frac{d}{2},\kappa )}{U(0,\frac{d}{2},\kappa \frac{r_{0}^{2}}{L^{2}})} \end{aligned}$$
(36)

(the same expression (36) was obtained in [26] for Feller processes), where

$$\begin{aligned} U(a,b;z)= & {} \frac{\Gamma (1-b)}{\Gamma (a-b+1)}M(a,b;z)\nonumber \\&+\frac{\Gamma (b-1)}{\Gamma (a)}z^{1-b}M(a-b+1,2-b;z) \end{aligned}$$
(37)

is the confluent hypergeometric function of the second kind [100] (also known as Tricomi function), \(M(a,b;z)=_{1}F_{1}\)(a,b,z)\(=\sum \nolimits _{n=0}^\infty {\frac{a^{(n)}z^{n}}{b^{(n)}n!}} \) is Kummer function, the confluent hypergeometric function of the first kind [100] with \(a^{(0)}=1\, {,\, \mathrm{and}\, }\,a^{(n)}=a(a+1) \cdots (a+n-1)=\Gamma (a+n)/\Gamma (a)\), where \(\Gamma (z)\) is the gamma function. In (36) \(\kappa =kL^{2}/2k_\mathrm{{B}} T\). In [82], a diffusing particle of mass m trapped by a harmonic potential of strength k and pulled by a constant force \(F_{0} \) is considered; the force in the Langevin equation \(F(X(t))=\)-kX(t)\(+F_{0}\) includes the externally applied Hooke term and constant force \(F_{0}\), \(D=k_\mathrm{{B}}T/\varsigma \) is the diffusion coefficient, and \(\varsigma \) is the drag constant.

An equation of the form (17) for \(\gamma (\Delta )\) and Laplace transform (36) takes on a more complex form and it is generally difficult to find an analytical solution. However, in some approximations [82], a closed analytical expression to the problem can be found.

Consider the Feller process, which is a diffusion process with linear drift and linear diffusion coefficient vanishing at zero point of coordinates. In [26], an expression was obtained for the   Laplace  transform  of  the  probability  density  of  the  the  Feller  process  Y(t)   to  reach  the  boundary  \({x\, =\, xc}\)   for  \({x>xc}\) for  the  first  time  (x   is  the  initial  value  of  the  process  at  \({t=0}\)) in the form

$$\begin{aligned} Z_{\gamma } =\frac{U(\gamma ,b;x)}{U(0 ,b;x_{c} )}\frac{U(\gamma ,b;x_{c} )}{U(0,b;x)}. \end{aligned}$$
(38)

This  expression  (38)  differs  from  (36)  only  in  the  values  of  the  parameters.  In  (38),  expression  (37)  with  parameters  \({a=\gamma }\)\({b=2\beta _1/k}^{2}\),  where  \({\beta _1}\)\(k>0\)  are  drift  and  diffusion  parameters  of  the  Feller  process.  The  time  evolution  of  the  process  is  thus  governed  by 

$$\begin{aligned} dY(t)=[-\alpha Y(t)+\beta _{1} ]\mathrm{{d}}t+k\sqrt{Y(t)} \mathrm{{d}}W(t), \end{aligned}$$

where \(\alpha >0\), \(\beta _{1}\), k are constant parameters, \(W(t)_{\, }\)is the Wiener process. In the approximation of small values of \(a = \gamma \) in (37), (38), one can use small \(\gamma \) expansion of the Kummer function [26]

$$\begin{aligned} U(a,b,x)= & {} 1+aU_{1} (x)+O(a^{2}),\quad \\ U_{1} (x)= & {} -\Psi (1-b)-\int \limits _0^x U(1,1+b,z)\mathrm{{d}}z,\\ \Psi (x)= & {} \frac{{\Gamma }'(x)}{\Gamma (x)},\quad 0<b<1. \end{aligned}$$

In this approximation at \(x_{c}=\) 0

$$\begin{aligned} Z_{1\gamma }= & {} \frac{1+\gamma U_{1} (x)}{1+\gamma U_{1} (0)},\quad \nonumber \\ \bar{{T}}_{\gamma }= & {} \frac{U_{1} (0)}{1+\gamma U_{1} (0)}-\frac{U_{1} (x)}{1+\gamma U_{1} (x)},\nonumber \\ T_{0}= & {} U_{1} (0)-U_{1} (x)=\int \limits _0^x {U(1,1+b,z)\mathrm{{d}}z} . \end{aligned}$$
(39)

An increase of the mean FPT, when \(\bar{{T}}_{\gamma } >T_{0} \), in this case is possible at

$$\begin{aligned} U_{1} (0)<T_{0}<2U_{1} (0),\quad \quad U_{1} (0)=-\Psi (1-b)>0,\quad 0<b<1. \nonumber \\ \end{aligned}$$
(40)

We assume that \(\gamma > 0\). Consider two cases. In the first case \(1+\gamma U_{1} (x)=1-\gamma (T_{0} -U_{1} (0))>0\), \(T_{0} -U_{1} (0)>0,\quad U_{1} (x)=U_{1} (0)-T_{0} <0\). Then, the values of the parameter \(\gamma \) for which the inequality \(\bar{{T}}_{\gamma } >T_{0} \) for the quantities from (39) is satisfied lie in the interval

$$\begin{aligned} \frac{[2U_{1} (0)-T_{0} ]}{U_{1} (0)[T_{0} -U_{1} (0)]}<\gamma <\frac{1}{[T_{0} -U_{1} (0)]}. \end{aligned}$$
(41)

For the case \(1+\gamma U_{1} (x)=1-\gamma (T_{0} -U_{1} (0))<0,\quad \), the opposite inequality \([2U_{1} (0)-T_{0} ]/U_{1} (0)[T_{0} -U_{1} (0)]>\gamma >1/[T_{0} -U_{1} (0)]\) should hold. However, it is not the case, since from (44), it follows that \(0<2-T_{0} /U_{1} (0)<1\).

The fulfillment of inequality (41) depends on the parameters b and x. Equation (17) for determining the dependence of \(\gamma \) on \(\Delta \) taking into account the term of the form (10), (11), (16) in this case takes the form

$$\begin{aligned}&-\Delta =\ln (1+\gamma U_{1} (x))-\ln (1+\gamma U_{1} (0))\\&\quad +\frac{\gamma [U_{1} (0)+\beta \partial U_{1} (0)/\partial \beta ]}{1+\gamma U_{1} (0)}-\frac{\gamma [U_{1} (x)+\beta \partial U_{1} (x)/\partial \beta ]}{1+\gamma U_{1} (x)} . \end{aligned}$$

Expanding the right-hand side of this equation in a series in \(\gamma \), and taking into account the terms up to \(\gamma ^{2}\), we obtain the quadratic equation

$$\begin{aligned}&\gamma ^{2}a_{2} +\gamma b_{2} -\Delta =0, \nonumber \\&a_{2}=(U_{1} ^{2}(0)-U_{1}^{2}(x))/2+U_{1} (0)\beta \partial U_{1} (0)/\partial \beta -U_{1} (x)\beta \partial U_{1} (x)/\partial \beta ,\nonumber \\&a_{2} =T_{0} \bigg [\frac{1}{2}(2U_{1} (0)-T_{0} )+\beta \frac{\partial U_{1} (0)}{\partial \beta }\bigg ]+[U_{1} (0)-T_{0} ]\beta \frac{\partial T_{0} }{\partial \beta }, \nonumber \\&b_{2}=-\beta \left( \frac{\partial U_{1} (0)}{\partial \beta }-\frac{\partial U_{1} (x)}{\partial \beta }\right) \nonumber \\&\quad =-\beta \frac{\partial T_{0} }{\partial \beta }, \frac{\partial U_{1} (0)}{\partial \beta }\nonumber \\&\quad =\frac{\partial U_{1} (0)}{\partial b}\frac{\partial b}{\partial \beta },\quad \frac{\partial U_{1} (x)}{\partial \beta }=\frac{\partial U_{1} (x)}{\partial b}\frac{\partial b}{\partial \beta },\quad \beta =\frac{1}{T},\nonumber \\&b_{2} =-\beta \frac{\partial b}{\partial \beta }\int \limits _0^x \frac{\partial U(1,1+b,z)}{\partial b}\mathrm{{d}}z,\quad U(1,1+b,z)\nonumber \\&\quad =\frac{\Gamma (-b)}{\Gamma (1-b)}M(1,1+b,z)+\Gamma (b)z^{-b}e^{z} . \end{aligned}$$
(42)

For the solution of the quadratic equation (42), the condition (41) takes the form

$$\begin{aligned}&\frac{[2U_{1} (0)-T_{0} ]}{U_{1}^{2}(0)[T_{0} -U_{1} (0)]^{2}}\bigg \{T_{0} [2U_{1} (0)-T_{0} ]\bigg [\frac{1}{2}(2U_{1} (0)-T_{0} )\nonumber \\&\quad +\beta {{\partial U_{1} (0)} \over {\partial \beta }}\bigg ]+[U_{1} (0)-T_{0} ][3U_{1} (0)-T_{0} ]\beta {{\partial T_{0} } \over {\partial \beta }}\bigg \}\nonumber \\&\quad<\Delta <\frac{1}{[T_{0} -U_{1} (0)]^{2}}\bigg \{T_{0} \bigg [\frac{1}{2}(2U_{1} (0)-T_{0} )\nonumber \\&\quad +\beta {{\partial U_{1} (0)} \over {\partial \beta }}\bigg ]\nonumber \\&\quad +2[U_{1} (0)-T_{0} ]\beta {{\partial T_{0} } \over {\partial \beta }}\bigg \}. \end{aligned}$$
(43)

In (42)–(43) do not include explicit expressions for \(\partial U_{1} (0) /\partial \beta , \partial T_{0} /\partial \beta \). Now, let us find them. Suppose the parameter \(\alpha \) in the stochastic equation for the Feller process is \(\alpha =1/T_{0} \). The drift parameter is \(f=-\alpha Y+\beta _{1} \). As above, in (18)–(19), we set the parameter f to be \(f=L/T_{0} \), where \(L=x-x_{c} \). For \(x_{c}=\)0, \(L=x\), where x is the initial value of the process at the initial time moment. Then, \(\beta _{1} =f+\alpha Y=(x+Y)/T_{0} \). The diffusion coefficient is \(D=k^{2}Y\), and the parameter b of (37)–(40) is equal to\(_{\, }b=2\beta _{2} /k^{2}=2(x+Y)Y/T_{0} D\). At \(\partial D/\partial \beta =-E_{a} D\)

$$\begin{aligned} \frac{\partial b}{\partial \beta }=b\left( E_{a} -\frac{1}{T_{0} }\frac{\partial T_{0} }{\partial \beta }\right) . \end{aligned}$$
(44)

From (39) to (40), we obtain

$$\begin{aligned} \frac{\partial T_{0} }{\partial \beta }=\frac{\partial U_{1} (0)}{\partial \beta }-\frac{\partial U_{1} (x)}{\partial \beta },\quad \frac{\partial U_{1} (0)}{\partial \beta }=\frac{\partial \Psi (1-b)}{\partial (1-b)}\frac{\partial b}{\partial \beta }. \end{aligned}$$

From (11), (39), we find \(u_{\gamma } =\frac{\gamma \partial U_{1} (0)/\partial \beta }{1+\gamma U_{1} (0)}-\frac{\gamma \partial U_{1} (x)/\partial \beta }{1+\gamma U_{1} (x)}\). As above, we assume \(u_{\gamma } =0\). From here

$$\begin{aligned}&\frac{\partial T_{0} }{\partial \beta }=\frac{\partial \Psi \gamma T_{0} bE_{a} }{1+\gamma (U_{1} (0)+b\partial \Psi )},\quad \partial \Psi =\frac{\partial \Psi (1-b)}{\partial (1-b)},\nonumber \\ \end{aligned}$$
(45)
$$\begin{aligned}&\frac{\partial U_{1} (0)}{\partial \beta }=\frac{\partial \Psi (1+\gamma U_{1} (0))bE_{a} }{1+\gamma (U_{1} (0)+b\partial \Psi )},\quad \nonumber \\&\frac{\partial U_{1} (x)}{\partial \beta }=\frac{\partial \Psi (1+\gamma U_{1} (x))bE_{a} }{1+\gamma (U_{1} (0)+b\partial \Psi )}. \end{aligned}$$
(46)

Substituting (45), (46) into (42), we obtain

$$\begin{aligned} a_{2}= & {} \frac{1}{2}(U^{2}_{1} (0)-U^{2}_{1} (x))+\frac{b\beta E_{a} \partial \Psi }{1+\gamma (U_{1} (0)+b\partial \Psi )}\\&\times [T_{0} +\gamma (U^{2}_{1} (0)-U^{2}_{1} (x))],\\&b_{2} =-\beta \frac{\partial T_{0} }{\partial \beta } =\frac{\gamma \partial \Psi T_{0} b\beta E_{a} }{1+\gamma (U_{1} (0)+b\partial \Psi )}. \end{aligned}$$

Equation (42) for the parameter \(\gamma \) in terms of \(\Delta \) takes the form

$$\begin{aligned}&\gamma ^{3}(U^{2}_{1} (0)-U^{2}_{1} (x))[b\beta E_{a} \partial \Psi +(U_{1} (0)+b\partial \Psi )/2]\\&\quad +\gamma ^{2}(U^{2}_{1} (0)-U^{2}_{1} (x))/2-\gamma \Delta (U_{1} (0)+b\partial \Psi )-\Delta =0. \end{aligned}$$

Neglecting the terms with \(\gamma ^{3}\), we find a positive solution to the quadratic equation

$$\begin{aligned}&\!\!\gamma \approx [\Delta (U_{1} (0)+b\partial \Psi )\nonumber \\&\quad \!\!+\sqrt{\Delta ^{2}(U_{1} (0)+b\partial \Psi )^{2}+2\Delta (U^{2}_{1} (0)-U^{2}_{1} (x))} ]/(U^{2}_{1} (0)-U^{2}_{1} (x)).\nonumber \\ \end{aligned}$$
(47)

At small values of \(\Delta \), when

$$\begin{aligned}&\sqrt{2\Delta (U^{2}_{1} (0)-U^{2}_{1} (x))} \sqrt{1+\Delta (U_{1} (0)+b\partial \Psi )^{2}\frac{1}{2(U^{2}_{1} (0)-U^{2}_{1} (x))}} \\&\quad \approx \sqrt{2\Delta (U^{2}_{1} (0)-U^{2}_{1} (x))}\\&\qquad \times [1+\Delta (U_{1} (0)+b\partial \Psi )^{2}\frac{1}{4(U^{2}_{1} (0)-U^{2}_{1} (x))}+\cdots ] \\ \end{aligned}$$

Equation (47) can be rewritten as

$$\begin{aligned} \gamma\approx & {} \frac{1}{(U^{2}_{1} (0)-U^{2}_{1} (x))}\left[ \sqrt{2\Delta (U^{2}_{1} (0)-U^{2}_{1} (x))}+\Delta (U_{1} (0)+b\partial \Psi )\right. \nonumber \\&\left. \times \left( 1+\frac{\sqrt{2\Delta (U^{2}_{1} (0)-U^{2}_{1} (x))} (U_{1} (0)+b\partial \Psi )}{4(U^{2}_{1} (0)-U^{2}_{1} (x))}+\cdots \right) \right] , \end{aligned}$$
(48)

or

$$\begin{aligned} \gamma= & {} \gamma _{0} \sqrt{\Delta }+\gamma _{1} \Delta +\gamma _{2} \Delta ^{3/2},\quad \gamma _{0} =\sqrt{\frac{2}{(U^{2}_{1} (0)-U^{2}_{1} (x))}} ,\nonumber \\ \gamma _{1}= & {} \frac{U_{1} (0)+b\partial \Psi }{(U^{2}_{1} (0)-U^{2}_{1} (x))},\quad \gamma _{2} =\gamma _{0} (U^{2}_{1} (0)+b^{2}\partial \Psi )^{2}/4. \end{aligned}$$
(49)

We rewrite the condition \(\bar{{T}}_{\gamma } >T_{0} \) in the form \(T_{0} >T_{0} [1+\gamma (U_{1} (x)+U_{1} (0))+\gamma ^{2}U_{1} (x)U_{1} (0)]\)

$$\begin{aligned}&(U_{1} (0)+U_{1} (x))+\gamma U_{1} (0)U_{1} (x)<0,\nonumber \\&\quad \gamma (-U_{1} (x)U_{1} (0))>U_{1} (0)+U_{1} (x). \end{aligned}$$
(50)

This condition can be satisfied for \(U_{1} (x)<0,\quad U_{1} (x)+U_{1} (0)>0\), which is possible at certain values of x. Substituting the expression (49) into (50) and neglecting the term with \(\Delta ^{3/2}\), we find the condition that \(\bar{{T}}_{\gamma } >T_{0} \) in the form

$$\begin{aligned}&\sqrt{\Delta }>\gamma _{+} ,\quad \gamma _{+} =\frac{\sqrt{(U^{2}_{1} (0)-U^{2}_{1} (x))} }{2(U_{1} (0)+b\partial \Psi )}\nonumber \\&\quad \times \left[ \sqrt{1-\frac{2(U_{1} (0)+U_{1} (x))(U_{1} (0)+b\partial \Psi )}{(U_{1} (0)U_{1} (x))}} -1\right] , \end{aligned}$$
(51)

where \(\gamma _{+} \) is the positive solution to the quadratic equation

$$\begin{aligned} \gamma _{1} \Delta +\gamma _{0} \sqrt{\Delta }+\frac{U_{1} (0)+U_{1} (x)}{U_{1} (0)U_{1} (x)}=0. \end{aligned}$$

Substitution of (49) into the Eq. (39) for \(\bar{{T}}_{\gamma } \) leads to the following formula:

$$\begin{aligned}&\bar{{T}}_{\gamma } =\frac{T_{0} }{R_{2} },\quad R_{2} =1+d_{1/2} \Delta ^{1/2}\nonumber \\&\quad +d_{1} \Delta ^{1}+d_{3/2} \Delta ^{3/2}+d_{2} \Delta ^{2}+d_{5/2} \Delta ^{5/2}+d_{3} \Delta ^{3},\nonumber \\&\quad d_{1/2} =\sqrt{\frac{2(U_{1} (0)+U_{1} (x))}{T_{0} }} ,\quad d_{1} =\frac{1}{T_{0} }\bigg [U_{1} (0)+b\partial \Psi \nonumber \\&\quad +\frac{2}{T_{0} }\frac{U_{1} (0)U_{1} (x)}{(U_{1} (0)+U_{1} (x))^{3/2}}\bigg ],\nonumber \\&\quad d_{3/2} =\sqrt{\frac{2}{T_{0} }} (U_{1} (0)+b\partial \Psi )\bigg [\frac{1}{4}\sqrt{(U_{1} (0)+U_{1} (x))} \nonumber \\&\quad \times (U_{1} (0)+b\partial \Psi )+\frac{2}{T_{0} }\frac{U_{1} (0)U_{1} (x)}{(U_{1} (0)+U_{1} (x))^{3/2}}\bigg ],\nonumber \\&\quad d_{2} =U_{1} (0)U_{1} (x)\frac{\gamma _{0}^{2}}{4}(U_{1} (0)+b\partial \Psi )^{2}(2+\gamma _{0}^{2}),\nonumber \\&\quad d_{5/2} =U_{1} (0)U_{1} (x)\frac{\gamma _{0} ^{2}}{4}(U_{1} (0)+b\partial \Psi )^{2}\gamma _{0} ,\nonumber \\&\quad d_{3} =U_{1} (0)U_{1} (x)\frac{\gamma _{0}^{2}}{4}(U_{1} (0)+b\partial \Psi )^{4}\frac{1}{4}. \end{aligned}$$
(52)

Let us present one more illustration to the above considerations, which, unlike the examples in (18), (23), (38), is based on experimental results. This example clearly shows the importance of taking into account the change in entropy and the effect of external influences on the average FPT.

In [83, 101], the authors studied the fluctuations of the time elapsed until the electric charge transferred through a conductor reached a given threshold value. The distribution of the first-passage times for the net number of electrons transferred between two metallic islands in Coulomb blockade regime is considered. In [83], a simple analytical approximation was derived for the first-passage-time (FPT) distribution, which takes into account the non-Gaussian statistics of the electron transport, and showed that it is capable of describing the experimental distributions with high accuracy.

The average FPT is expressed in terms of the entropy change accompanying this process. In addition to the changes that are necessarily adherent to the course of a random process, any other changes in entropy can be taken into account, which correspond to some other processes in the system. The net effect of such changes affecting the average FPT is illustrated by taking into account different values of the bias voltage. The applied voltage acts as an outer impact on the system. The average FPT with a zero value of the argument of the Laplace transform of the FPT distribution density, which is associated with changes in the entropy of the system, does not reflect the impact of real processes on the average FPT. It is necessary to take into account those changes in entropy that accompany the random process of reaching a certain boundary.

Let us briefly discuss the connection between distribution (8) and superstatistics [8, 9]. There, the assumption is not made about the FPT distribution not depending on the random internal energy u; such a dependence is taken into account. A stochastic storage model [102] is used as a stochastic process for this system. The distributions of superstatistics from [8, 9] can be obtained in another way, different from the approach of [8, 9], if we assume that the intensity of energy flow in the system \(\lambda \) depends on the density of the total random internal energy of the system u as \(\lambda \rightarrow \lambda _{0} /(n_{0} +u)\). The average value of one stepwise input\( x_{0}\) into the system [the input in simple stochastic storage models is a series of Poisson distributed batch inputs with some distribution b(x) of the material in each batch; see [102] for details] is cast as \(\bar{{x}}\rightarrow \bar{{x}}_{0} (n_{0} +u)\). For a constant release rate equal to unity, as in the corresponding storage model [96], the partition function \(Q_{k}\) does not change; (see for details [8, 9, 96, 102, 103]) \(Q_{k}^{-1}=P_{0k} =1-\rho ;\quad \rho =\lambda \bar{{x}},\quad \bar{{x}}=\int {xb(x)\mathrm{{d}}x} \), b(x) is distribution function one stepwise input with average value \(\bar{{x}}\). Such substitution can be substantiated by physical considerations that with an increase in the energy of the system and an increase in the number of particles in it, it is more difficult for flows of energy and the number of particles to enter the system.

In our works [8, 9], we have obtained the superstatistics in a way different from that of [104]. This approach is free from the shortcomings pointed out in [105]. The suggested approach can be considered as broadening and detalizing the superstatistics theory. The obtained distribution contains the new parameter related to a thermodynamic state of the system, and also with distribution of a lifetime of a metastable states and interaction of this states with an environment.

The Gibbs distribution does not describe the dissipative processes that develop in the system. Superstatistics describe systems by constantly putting energy into a system with permanent dissipation. The value \(\alpha =\gamma /\lambda \) is connected with dissipative processes in the system (through parameter of distribution (8)–(9) \(\gamma )\). It defines the correlation between Gibbs and superstatistics multipliers in the distribution from [8, 9]. Other forms of distributions of the form of superstatistics are possible, which can be derived from a distribution of the form (8)–(9) [96].

The original distribution (9) contains two distribution functions: f and R (13), in contrast to superstatistics, which contain only one distribution density for the reciprocal temperature. Therefore, the distribution (9) and distributions obtained from it have greater capabilities than superstatistics. When obtaining expressions from (9) [8,9,10], only the gamma distribution function for \(f(T_{\gamma } )\) (13) was used. Another type for this distribution function can be chosen, as well.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryazanov, V.V. First-passage time and change of entropy. Eur. Phys. J. B 94, 242 (2021). https://doi.org/10.1140/epjb/s10051-021-00246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00246-0

Navigation