Skip to main content
Log in

Quantum dynamics from fixed points and their stability

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We approach quantum dynamics in one spatial dimension from a systematic study of moments starting from the dynamics of the mean position. This is complementary to the approach of Brizuela whose starting point was generalized recursion relations between moments. The infinite set of coupled equations is truncated which allows us to use the techniques used in the study of dynamical systems. In particular we predict for what initial variance the purely quartic oscillator will time develop with minimal change in the shape of the initial packet and what the frequency of oscillation of the mean position will be. We show how quantum fluctuations will cause a particle to escape from the well of a volcano potential and how they will cause an oscillation between the two wells of a double well potential. Further, we consider an oscillatory external field in addition to the double well potential and work near the separatrix where the classical system is known to be chaotic. We show how the quantum fluctuations suppresses the chaotic behaviour after a time interval inversely proportional to the strength of the quantum fluctuations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Zwiebach,Quantum Physics (M.I.T. Open Course Ware, 2013)

  2. C. Cohen-Tannoudji, B. Diu, F. Laloe,Quantum Mechanics (Wiley, New York, 1977)

  3. R. Shankar,Principles of Quantum Mechanics (Springer, 1994)

  4. R.W. Robinett,Quantum Mechanics: classical results, modern systems and visualized examples (Oxford University Press, 2006)

  5. P. Ehrenfest, Z. Phys. 45, 455 (1927)

    Article  ADS  Google Scholar 

  6. M. Jammer, inConceptual Development of Quantum Mechanics (McGraw-Hill, New York, 1966), p. 363

  7. L.E. Ballentine, Y. Yang, J.P. Zibin, Phys. Rev. A 50, 2854 (1994)

    Article  ADS  Google Scholar 

  8. B.C. Hall,Quantum Theory for Mathematicians (Springer, 2013)

  9. E.J. Heller, J. Chem. Phys. 62, 1544 (1975)

    Article  ADS  Google Scholar 

  10. A.K. Pattanayak, W.C. Schieve, Phys. Rev. Lett. 72, 2855 (1994)

    Article  ADS  Google Scholar 

  11. A.K. Pattanayak, W.C. Schieve, Phys. Rev. E 50, 3601 (1994)

    Article  ADS  Google Scholar 

  12. B. Sundaram, P.W. Milonni, Phys. Rev. E 51, 1971 (1995)

    Article  ADS  Google Scholar 

  13. A. Roy, J.K. Bhattacharjee, Phys. Lett. A 288, 1 (2001)

    Article  ADS  Google Scholar 

  14. M. Gell-Mann, J.B. Hartle, Phys. Rev. D 47, 3345 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Bhattacharya, S. Habib, K. Jacobs, Los Alamos Sci. 27, 110 (2002)

    Google Scholar 

  16. D. Brizuela, Phys. Rev. D 90, 085027 (2014)

    Article  ADS  Google Scholar 

  17. D. Brizuela, Phys. Rev. D 90, 125018 (2014)

    Article  ADS  Google Scholar 

  18. R.H. Kraichnan, Phys. Fluids 8, 575 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Qian, Phys. Fluids 26, 2098 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. A.J. Bray, Adv. Phys. 43, 357 (1994)

    Article  ADS  Google Scholar 

  21. S. Puri, Phase Trans. 77, 407 (2004)

    Article  Google Scholar 

  22. P. Smadbeck, Y.N. Kaznessis, Proc. Natl. Acad. Sci. 110, 14261 (2013)

    Article  ADS  Google Scholar 

  23. S.H. Strogatz,Non-linear Dynamics and Chaos (Perseus Books, 1994)

  24. L.E. Reichl, W.M. Zheng, Phys. Rev. A 29, 2186 (1984)

    Article  ADS  Google Scholar 

  25. L.E. Reichl, W.M. Zheng, Phys. Rev. A 30, 1068 (1984)

    Article  ADS  Google Scholar 

  26. W.A. Lin, L.E. Ballentine, Phys. Rev. A 45, 3637 (1992)

    Article  ADS  Google Scholar 

  27. R.F. Fox, J. Keizer, Phys. Rev. A 43, 1709 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  28. L. Bonci, R. Roncaglia, B.J. West, P. Grigolini, Phys. Rev. Lett. 67, 2593 (1991)

    Article  ADS  Google Scholar 

  29. S. Chaudhuri, G. Gangopadhyay, D.S. Ray, Phys. Rev. E 54, 2359 (1996)

    Article  ADS  Google Scholar 

  30. R. Koley, S. Kar, Phys. Lett. A 363, 369 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Chawla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chawla, R., Bhattacharjee, J.K. Quantum dynamics from fixed points and their stability. Eur. Phys. J. B 92, 196 (2019). https://doi.org/10.1140/epjb/e2019-100340-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100340-6

Keywords

Navigation