Skip to main content
Log in

A solvable model of Landau quantization breakdown

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Physics of two-dimensional (2D) electron gases under perpendicular magnetic field often displays three distinct stages when increasing the field amplitude: a low field regime with classical magnetotransport, followed at intermediate field by a Shubnikov–de Haas phase where the transport coefficients present quantum oscillations, and, ultimately, the emergence at high field of the quantum Hall effect with perfect quantization of the Hall resistance. A rigorous demonstration of this general paradigm is still limited by the difficulty in solving models of quantum Hall bars with macroscopic lateral dimensions and smooth disorder. We propose here the exact solution of a simple model exhibiting similarly two sharp transitions that are triggered by the competition of cyclotron motion and potential-induced drift. As a function of increasing magnetic field, one observes indeed three distinct phases showing respectively fully broken, partially smeared, or perfect Landau level quantization. This model is based on a non-rotationally invariant, inverted 2D harmonic potential, from which a full quantum solution is obtained using 4D phase space quantization. The developed formalism unifies all three possible regimes under a single analytical theory, as well as arbitrary quadratic potentials, for all magnetic field values.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. von Klitzing, Rev. Mod. Phys. 58, 519 (1986)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature (Lond.) 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature (Lond.) 438, 201 (2005)

    Article  ADS  Google Scholar 

  4. J. Jobst, D. Waldmann, F. Speck, R. Hirner, D.K. Maude, T. Seyller, H.B. Weber, Phys. Rev. B 81, 195434 (2010)

    Article  ADS  Google Scholar 

  5. J. Falson, M. Kawasaki, Rep. Prog. Phys. 81, 1 (2018)

    Article  Google Scholar 

  6. H. Cao, J. Tian, I. Miotkowski, T. Shen, J. Hu, S. Qiao, Y.P. Chen, Phys. Rev. Lett. 108, 216803 (2012)

    Article  ADS  Google Scholar 

  7. M.M. Fogler, A.Yu. Dobin, V.I. Perel, B.I. Shklovskii, Phys. Rev. B 56, 6823 (1997)

    Article  ADS  Google Scholar 

  8. M. Flöser, B.A. Piot, C.L. Campbell, D.K. Maude, M. Henini, R. Airey, Z.R. Wasilewski, S. Florens, T. Champel, New J. Phys. 15, 083027 (2013)

    Article  ADS  Google Scholar 

  9. R.B. Laughlin, Phys. Rev. B 23, 5632(R) (1981)

    Article  ADS  Google Scholar 

  10. B.I. Halperin, Phys. Rev. B 25, 2185 (1982)

    Article  ADS  Google Scholar 

  11. P. Streda, J. Phys. C 15, L717 (1982)

    Article  ADS  Google Scholar 

  12. D.J. Thouless, M. Kohmoto, M. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  13. D.J. Thouless, Phys. Rev. B 27, 6083 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.H. MacDonald, P. Streda, Phys. Rev. B 29, 1616 (1984)

    Article  ADS  Google Scholar 

  15. R.E. Prange, S.M. Girvin (Eds.), The Quantum Hall Effect (Springer, New York, 1987)

  16. M. Büttiker, Phys. Rev. B 38, 9375 (1988)

    Article  ADS  Google Scholar 

  17. M. Janssen, O. Viehweger, U. Fastenrath, J. Hadju, Introduction to the Theory of the Integer Quantum Hall Effect (VCH, Germany, 1994)

  18. B. Huckestein, Rev. Mod. Phys. 67, 357 (1995)

    Article  ADS  Google Scholar 

  19. I.A. Dmitriev, F. Evers, I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, P. Wölfle, Phys. Status Solidi B 245, 239 (2008)

    Article  ADS  Google Scholar 

  20. V. Fock, Z. Phys. 47, 446 (1928)

    Article  ADS  Google Scholar 

  21. C.G. Darwin, Proc. Camb. Philos. Soc. 27, 86 (1931)

    Article  ADS  Google Scholar 

  22. L. Landau, Z. Phys. 64, 629 (1930)

    Article  ADS  Google Scholar 

  23. H.A. Fertig, B.I. Halperin, Phys. Rev. B 36, 7969 (1987)

    Article  ADS  Google Scholar 

  24. M. Büttiker, Phys. Rev. B 41, 7906(R) (1990)

    Article  ADS  Google Scholar 

  25. J.K. Jain, S. Kivelson, Phys. Rev. B 37, 4111 (1988)

    Article  ADS  Google Scholar 

  26. A. Entelis, S. Levit, Phys. Rev. Lett. 69, 3001 (1992)

    Article  ADS  Google Scholar 

  27. V. Kagalovsky, Phys. Rev. B 53, 13656 (1996)

    Article  ADS  Google Scholar 

  28. T. Tochishita, M. Mizui, M.H. Kuratsuji, Phys. Lett. A 212, 304 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  29. P. Krasón, J. Milewski, Acta Phys. Pol. A 132, 94 (2017)

    Google Scholar 

  30. I.A. Malkin, V.I. Man’ko, Sov. Phys. JETP 28, 527 (1969)

    ADS  Google Scholar 

  31. T. Champel, S. Florens, Phys. Rev. B 75, 245326 (2007)

    Article  ADS  Google Scholar 

  32. T. Champel, S. Florens, L. Canet, Phys. Rev. B 78, 125302 (2008)

    Article  ADS  Google Scholar 

  33. T. Champel, S. Florens, Phys. Rev. B 80, 161311(R) (2009)

    Article  ADS  Google Scholar 

  34. T. Champel, S. Florens, Phys. Rev. B 80, 125322 (2009)

    Article  ADS  Google Scholar 

  35. T. Champel, S. Florens, Phys. Rev. B 82, 045021 (2010)

    Article  ADS  Google Scholar 

  36. K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka, F. Meier, Y. Hirayama, R.A. Römer, R. Wiesendanger, M. Morgenstern, Phys. Rev. Lett. 101, 256802 (2008)

    Article  ADS  Google Scholar 

  37. K. Hashimoto, T. Champel, S. Florens, C. Sohrmann, J. Wiebe, Y. Hirayama, R.A. Römer, R. Wiesendanger, M. Morgenstern, Phys. Rev. Lett. 109, 116805 (2012)

    Article  ADS  Google Scholar 

  38. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Phys. (N.Y.) 111, 61 (1978)

    Article  ADS  Google Scholar 

  39. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Ann. Phys. (N.Y.) 111, 111 (1978)

    Article  ADS  Google Scholar 

  40. C.K. Zachos, D.B. Fairlie, T.L. Curtright (Eds.), Quantum Mechanics in Phase Space: An Overview with Selected Papers, World Scientific Series in 20th Century Physics (World Scientific, Singapore, 2005), Vol. 34

  41. A. Feldman, A.H. Kahn, Phys. Rev. B 1, 4584 (1970)

    Article  ADS  Google Scholar 

  42. S. Varro, J. Phys. A: Math. Gen. 17, 1631 (1984)

    Article  ADS  Google Scholar 

  43. V.I. Man’ko, E.D. Zhebrak, Opt. Spectrosc. 113, 624 (2012)

    Article  ADS  Google Scholar 

  44. E.D. Zhebrak, Phys. Scr. T153, 014063 (2013)

    Article  ADS  Google Scholar 

  45. T. Champel, S. Florens, M.E. Raikh, Phys. Rev. B 83, 125321 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Champel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Champel, T., Florens, S. A solvable model of Landau quantization breakdown. Eur. Phys. J. B 92, 124 (2019). https://doi.org/10.1140/epjb/e2019-100107-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100107-7

Keywords

Navigation