Skip to main content
Log in

Physical properties of niobium-based intermetallics (Nb3B; B = Os, Pt, Au): a DFT-based ab-initio study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Structural, elastic and electronic band structure properties of A-15 type Nb-based intermetallic compounds Nb3B (B = Os, Pt, Au) have been revisited using first principles calculations based on the density functional theory (DFT). All these show excellent agreement with previous reports. More importantly, electronic bonding, charge density distribution and Fermi surface features have been studied in detail for the first time. Vickers hardness of these compounds is also calculated. The Fermi surfaces of Nb3B contain both hole- and electron-like sheets, the features of which change systematically as one move from Os to Au. The electronic charge density distribution implies that Nb3Os, Nb3Pt and Nb3Au have a mixture of ionic and covalent bondings with a substantial metallic contribution. The charge transfer between the atomic species in these compounds has been explained via the Mulliken bond population analysis and the Hirshfeld population analysis. The bonding properties show a good correspondence to the electronic band structure derived electronic density of states (DOS) near the Fermi level. Debye temperature of Nb3B (B = Os, Pt, Au) has been estimated from the elastic constants and shows a systematic behavior as a function of the B atomic species. A good correspondence among the elastic, electronic and charge density distribution properties are found. The superconducting transition temperature is found to be dominated by the electronic density of states at the Fermi level. We have discussed possible implications of the results obtained in this study in details in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Hume-Rothery, J. Inst. Met. 35, 209 (1925)

    Google Scholar 

  2. J. Liang, D. Fan, P. Jiang, H. Liu, W. Zhao, Intermetallics 87, 27 (2017)

    Google Scholar 

  3. T. An, F. Qin, J. Electron. Packag. 138, 011002 (2015)

    Google Scholar 

  4. H. Lu, N. Zou, X. Zhao, J. Shen, X. Lu, Y. He, Intermetallics 88, 91 (2017)

    Google Scholar 

  5. Y. Terada, K. Ohkubo, S. Miura, J.M. Sanchez, T. Mohri, J. Alloys Compd. 354, 202 (2003)

    Google Scholar 

  6. M. Rajagopalan, M. Sundareswari, J. Alloys Compd. 379, 8 (2004)

    Google Scholar 

  7. Y. Terada, Platin. Met. Rev. 52, 208 (2008)

    Google Scholar 

  8. L. Mohammedi, B. Daoudi, A. Boukraa, Comput. Condens. Matter 2, 11 (2015)

    Google Scholar 

  9. J. Magnien, G. Khatibi, M. Lederer, H. Ipser, Mater. Sci. Eng.: A 673, 541 (2016)

    Google Scholar 

  10. H. Lee, M. Chen, H. Jao, T. Liao, Mater. Sci. Eng.: A 358, 134 (2003)

    Google Scholar 

  11. K.S. Kim, S.H. Hun, K. Suganuma, J. Alloys Compd. 352, 226 (2003)

    Google Scholar 

  12. M.H.F. Sluiter, Calphad 30, 357 (2006)

    Google Scholar 

  13. K. Tachikawa, Fusion Eng. Des. 81, 2401 (2006)

    Google Scholar 

  14. A. Godeke, B. Haken et al., Supercond. Sci. Technol. 19, R100 (2006)

    Google Scholar 

  15. R. Boscencu, M. Ilie, R. Socoteanu, Int. J. Mol. Sci. 12, 5552 (2011)

    Google Scholar 

  16. H. Ohno, T. Shinoda, Y. Oya-Seimiya, J. Jpn. Inst. Met. 68, 769 (2004)

    Google Scholar 

  17. H. Kumakura, H. Kitaguchi, A. Matsumoto et al., Supercond. Sci. Technol. 18, 147 (2005)

    ADS  Google Scholar 

  18. A. Godeke, M.C. Jewell, C.M. Fischer et al., J. Appl. Phys. 97, 1 (2005)

    Google Scholar 

  19. P.J. Lee, D.C. Larbalestier, IEEE Trans. Appl. Supercond. 15, 3474 (2005)

    ADS  Google Scholar 

  20. C.V. Renaud, T. Wong, L.R. Motowidlo, IEEE Trans. Appl. Supercond. 15, 3418 (2005)

    ADS  Google Scholar 

  21. S. Haindl, M. Eisterer, R. Muller et al., IEEE Trans. Appl. Supercond. 15, 3414 (2005)

    ADS  Google Scholar 

  22. T. Takeuchi, M. Kosuge, N. Banno et al., Supercond. Sci. Technol. 18, 985 (2005)

    ADS  Google Scholar 

  23. A.V. Skripov, L.S. Voyevodina, R. Hempelmann, Phys. Rev. B 73, 1 (2006)

    Google Scholar 

  24. C.D. Hawes, P.J. Lee, D.C. Larbalestier, Supercond. Sci. Technol. 19, S27 (2006)

    ADS  Google Scholar 

  25. S.M. Deambrosis, G. Keppel et al., Physica C 441, 108 (2006)

    ADS  Google Scholar 

  26. A. Godeke, Supercond. Sci. Technol. 19, R68 (2006)

    ADS  Google Scholar 

  27. G.R. Stewart, Physica C 514, 28 (2015)

    ADS  Google Scholar 

  28. D. Dew-Hughes, Cryogenics 15, 435 (1975)

    ADS  Google Scholar 

  29. Y. Ding, S. Deng, Y. Zhao, J. Mod. Transp. 22, 183 (2014)

    Google Scholar 

  30. C. Paduani, Braz. J. Phys. 37, 1073 (2007)

    ADS  Google Scholar 

  31. B.M. Klein, L.L. Boyer, D.A. Papconstantopoulos, Phys. Rev. Lett. 42, 530 (1979)

    ADS  Google Scholar 

  32. E.Z. Kurmaev, F. Werfel, O. Brümmer, R. Flükiger, Solid State Commun. 21, 39 (1977)

    Google Scholar 

  33. E.Z. Kurmaev, V.P. Belash, R. Flukiger, A. Junod, Solid State Commun. 16, 1139 (1975)

    ADS  Google Scholar 

  34. R.A. Pollak, C.C. Tsuei, R.W. Johnson, Solid State Commun. 23, 879 (1977)

    ADS  Google Scholar 

  35. A. Junod, T. Jarlborg, J. Muller, Phys. Rev. B 27, 1568 (1983)

    ADS  Google Scholar 

  36. Materials studio CASTEP manual Accelrys 2010, https://doi.org/www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html

  37. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717 (2002)

    ADS  Google Scholar 

  38. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)

    ADS  Google Scholar 

  39. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    ADS  Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  41. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  42. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)

    Google Scholar 

  43. F.D. Murnaghan,Finite Deformation of an Elastic Solid (John Wiley, New York, 1951)

  44. D. Sanchez-Portal, E. Artacho, J.M. Soler, Solid State Commun. 95, 685 (1995)

    ADS  Google Scholar 

  45. M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev. B 54, 16317 (1996)

    ADS  Google Scholar 

  46. S. Geller Acta Crystallogr. 9, 885 (1956)

    Google Scholar 

  47. S.V. Reddy, S.V. Suryanarayana, J. Mater. Sci. Lett. 3, 763 (1984)

    Google Scholar 

  48. P.A. Beck (ed.), Electronic Structure and Alloy Chemistry of the Transition Elements (Interscience Publishers, New York, 1963)

  49. M.V. Nevit, inIntermetallics Compounds, edited by J.H. Westbrook (R.E. Krieger Publishing Co., Huntington, NY, 1977)

  50. C. Paduani, Solid State Commun. 144, 352 (2007)

    ADS  Google Scholar 

  51. M. Mattesini, R. Ahuja, B. Johansson, Phys. Rev. B 68, 184108 (2003)

    ADS  Google Scholar 

  52. A. Sari, G. Merad, H. Si Abdelkader, Comput. Mater. Sci. 96, 348 (2015)

    Google Scholar 

  53. M.E. Fine, L.D. Brown, H.L. Marcus, Scr. Metall. 18, 951 (1984)

    Google Scholar 

  54. M.A. Ali, M.M. Hossain, M.A. Hossain, M.T. Nasir, M.M. Uddin, M.Z. Hasan, A.K.M.A. Islam, S.H. Naqib, J. Alloys Compd. 743, 146 (2018)

    Google Scholar 

  55. J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001)

    ADS  Google Scholar 

  56. Q.M. Hu, R. Yang, Curr. Opin. Solid State Mater. Sci. 10, 19 (2006)

    ADS  Google Scholar 

  57. B.Y. Tang, W.Y. Yu, X.Q. Zeng, W.J. Ding, M.F. Gray, Mater. Sci. Eng. A 489, 444 (2008)

    Google Scholar 

  58. S.F. Pugh, Philos. Mag. 45, 43 (1954)

    Google Scholar 

  59. V.V. Bannikov, I.R. Shein, A.L. Ivanovskii, Physica B 405, 4615 (2010)

    ADS  Google Scholar 

  60. W. Feng, S. Cui, Can. J. Phys. 92, 1652 (2014)

    ADS  Google Scholar 

  61. Z. Sun, D. Music, R. Ahuja, J.M. Schneider, Phys. Rev. B 71, 193402 (2005)

    ADS  Google Scholar 

  62. L. Vitos, P.A. Korzhavyi, B. Johansson, Nat. Mater. 2, 25 (2003)

    ADS  Google Scholar 

  63. R.C. Lincoln, K.M. Koliwad, P.B. Ghate, Phys. Rev. 157, 463 (1967)

    ADS  Google Scholar 

  64. K.J. Puttlitz, K.A. Stalter, inHandbook of Lead-Free Solder Technology for Microelectronic Assemblies (Springer, New York, 2005), p. 98

  65. M.A. Ali, A.K.M.A. Islam, M.S. Ali, J. Sci. Res. 4, 1 (2012)

    Google Scholar 

  66. M.J. Phasha, P.E. Ngoepe, H.R. Chauke, D.G. Pettifor, D. Nguyen-Mann, Intermetallics 18, 2083 (2010)

    Google Scholar 

  67. M. Sundareswari, S. Ramasubramanian, M. Rajagopalan, Solid State Commun. 150, 2057 (2010)

    ADS  Google Scholar 

  68. M.A. Ali, M.A. Hadi, M.M. Hossain, S.H. Naqib, A.K.M.A. Islam, Phys. Status Solidi B 254, 1700010 (2017)

    ADS  Google Scholar 

  69. M.A. Hadi, M.S. Ali, S.H. Naqib, A.K.M.A. Islam, Chin. Phys. B 26, 037103 (2017)

    ADS  Google Scholar 

  70. M.A. Hadi, M.T. Nasir, M. Roknuzzaman, M.A. Rayhan, S.H. Naqib, A.K.M.A. Islam, Phys. Status Solidi B 253, 2020 (2016)

    ADS  Google Scholar 

  71. M.A. Hadi, M. Roknuzzaman, A. Chroneos, S.H. Naqib, A.K.M.A. Islam, V. Vovk, K. Ostrikov, Comp. Mater. Sci. 137, 318 (2017)

    Google Scholar 

  72. S.V. Reddy, S.V. Suryanarayana, J. Mater. Sci. Lett. 5, 436 (1986)

    Google Scholar 

  73. J.H. Xu, T. Oguchi, A.J. Freeman, Phys. Rev. B 36, 4186 (1987)

    ADS  Google Scholar 

  74. T. Hong, T.J. Watson-Yang, A.J. Freeman, T. Oguchi, J.H. Xu, Phys. Rev. B 41, 12462 (1990)

    ADS  Google Scholar 

  75. C.D. Gelatt, Jr. A.R. Williams, V.L. Mourzzi, Phys. Rev. B 27, 2005 (1983)

    ADS  Google Scholar 

  76. A. Pasturel, C. Colinet, P. Hicter, Physica B 132, 177 (1985)

    Google Scholar 

  77. I. Galanakis, P. Mavropoulous, J. Phys.: Condens. Matter 19, 315213 (2007)

    ADS  Google Scholar 

  78. C. Paduani, Physica B 393, 105 (2007)

    ADS  Google Scholar 

  79. G. Arbman, T. Jarlborg, Solid State Commun. 26, 857 (1978)

    ADS  Google Scholar 

  80. T. Jarlborg, A. Junod, M. Peter, Phys. Rev. B 27, 1558 (1983)

    ADS  Google Scholar 

  81. K.M. Ho, M.L. Cohen, W.E. Pickett, Phys. Rev. Lett. 41, 815 (1978)

    ADS  Google Scholar 

  82. A.T. Van Kessel, H.W. Myron, F.M. Mueller, Phys. Rev. Lett. 41, 181 (1978)

    ADS  Google Scholar 

  83. W.E. Pickett, K.M. Ho, M.L. Cohen, Phys. Rev. 19, 1734 (1979)

    ADS  Google Scholar 

  84. L.F. Mattheiss, W. Weber, Phys. Rev. B 25, 2243 (1982)

    ADS  Google Scholar 

  85. B. Sadigh, V. Ozolins, Phys. Rev. B 57, 2793 (1998)

    ADS  Google Scholar 

  86. B.M. Klein, L.L. Boyer, D.A. Papconstantopoulos, Phys. Rev. Lett. 42, 530 (1979)

    ADS  Google Scholar 

  87. C. Paduani, Solid State Commun. 144, 352 (2007)

    ADS  Google Scholar 

  88. C. Paduani, Physica B 393, 105 (2007)

    ADS  Google Scholar 

  89. E.Z. Kurmaev, F. Werfel, O. Brümmer, R. Flükiger, Solid State Commun. 21, 39 (1977)

    Google Scholar 

  90. E.Z. Kurmaev, V.P. Belash, R. Flukiger, A. Junod, Solid State Commun. 16, 1139 (1975)

    ADS  Google Scholar 

  91. R.A. Pollak, C.C. Tsuei, R.W. Johnson, Solid State Commun. 23, 879 (1977)

    ADS  Google Scholar 

  92. A. Junod, T. Jarlborg, J. Muller, Phys. Rev. B 27, 1568 (1983)

    ADS  Google Scholar 

  93. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955)

    ADS  Google Scholar 

  94. M.D. Segall, R. Shah, C.J. Pickard, M.C. Payne, Phys. Rev. B 54, 16317 (1996)

    ADS  Google Scholar 

  95. M.A. Hadi, S.-R.G. Christopoulos, S.H. Naqib, A. Chroneos, M.E. Fitzpatrick, A.K.M.A. Islam, J. Alloys Compd. 748, 804 (2018)

    Google Scholar 

  96. M.A. Hadi, S.H. Naqib, S.-R.G. Christopoulos, A. Chroneos, A.K.M.A. Islam, J. Alloys Compd. 724, 1167 (2018)

    Google Scholar 

  97. F. Parvin, S.H. Naqib, Chin. Phys. B 26, 106201 (2017)

    ADS  Google Scholar 

  98. P. Barua, M.M. Hossain, M.A. Ali, M.M. Uddin, S.H. Naqib, A.K.M.A. Islam, J. Alloys Compd. 770, 523 (2019)

  99. M.A. Hadi, M.A. Alam, M. Roknuzzaman, M.T. Nasir, A.K.M.A. Islam, S.H. Naqib, Chin. Phys. B 24, 117401 (2015)

    ADS  Google Scholar 

  100. X. Li, D. Chen, Y. Wu, M. Wang, N. Ma, H. Wang, AIP Adv. 7, 065012 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh H. Naqib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naher, M.I., Parvin, F., Islam, A.K.M.A. et al. Physical properties of niobium-based intermetallics (Nb3B; B = Os, Pt, Au): a DFT-based ab-initio study. Eur. Phys. J. B 91, 289 (2018). https://doi.org/10.1140/epjb/e2018-90388-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90388-9

Keywords

Navigation