Skip to main content
Log in

Effects of Cr on H and He trapping and vacancy complexes in V in a fusion environment: a first-principles study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

First-principles density functional theory was used to investigate the interaction between hydrogen (H) and helium (He) in V–Cr alloy, which is a potential structural material for use in fusion reactors. When vacancies are present in the V–Cr alloy, a single He atom prefers to occupy the octahedral site near the Cr atom rather than vacancy centre, which differs from the cases of iron and tungsten. Because of the decrease of the electron density around the He atom, there was a strong interaction between He and H. In the vicinity of He-vac complexes, H atoms tend to stay in the tetrahedral site rather than occupy the octahedral-interstitial site. A single He-vac complex can trap as many as six H atoms, which is more than can be trapped by an empty vacancy in the V–Cr alloy because of the electronic density redistribution of vacancy vicinity. This strong attraction explains the enhanced retention of H and He observed near the surface of V and V-based alloys under both sequential and simultaneous bombardments. The results provide useful insight into the application of the V-based alloys as candidate structural materials in fusion Tokamaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Satou, K. Abe, H. Kayano, J. Nucl. Mater. 179–181, 757 (1991)

    Article  Google Scholar 

  2. A.F. Rowcliffe, S.J. Zinkle, D.T. Hoelzer, J. Nucl. Mater. 283–287, 508 (2000)

    Article  Google Scholar 

  3. R.J. Kurtz, M.L. Hamilton, J. Nucl. Mater. 283–287, 628 (2000)

    Article  Google Scholar 

  4. E.V. Dyomina, P. Fenici, V.P. Kolotov, M. Zucchetti, J. Nucl. Mater. 258–263, 1784 (1998)

    Article  Google Scholar 

  5. R.H. Jones, H.L. Heinisch, K.A. McCarthy, J. Nucl. Mater. 271–272, 518 (1999)

    Article  Google Scholar 

  6. N.P. Taylor, C.B.A. Forty, D.A. Petti, K.A. McCarthy, J. Nucl. Mater. 283–287, 28 (2000)

    Article  Google Scholar 

  7. E.E. Bloom, R.W. Conn, J.W. Davis, R.E. Gold, R. Little, K.R. Schultz, D.L. Smith, F.W. Wiffen, J. Nucl. Mater. 122, 17 (1984)

    Article  ADS  Google Scholar 

  8. T. Sato, T. Okita, N. Sekimura, J. Nucl. Mater. 307–311, 385 (2002)

    Article  Google Scholar 

  9. B.A. Loomis, D.L. Smith, F.A. Garner, J. Nucl. Mater. 179–181, 771 (1991)

    Article  Google Scholar 

  10. B.A. Loomis, D.L. Smith, J. Nucl. Mater. 191–194, 84 (1992)

    Google Scholar 

  11. Y. Hatano, Y. Nanjo, R. Hayakawa, K. Watanabe, J. Nucl. Mater. Part 2 283–287, 868 (2000)

    Article  Google Scholar 

  12. I. Takagi, N. Matsubara, M. Akiyoshi, T. Sasaki, K. Moritani, H. Moriyama, J. Nucl. Mater. 363–365, 955 (2007)

    Article  Google Scholar 

  13. Y. Hirohata, T. Yamada, Y. Yamauchi, T. Hino, T. Nagasaka, T. Muroga, J. Nucl. Mater. 348, 33 (2006)

    Article  ADS  Google Scholar 

  14. T. Suzuki, K. Takata, Mater. Sci. Eng. A 163, 99 (1993)

    Article  Google Scholar 

  15. J. Masuda, K. Hashizume, T. Otsuka, T. Tanabe, Y. Hatano, Y. Nakamura, T. Nagasaka, T. Muroga, J. Nucl. Mater. 363–365, 1256 (2007)

    Article  Google Scholar 

  16. P.B. Zhang, J.J. Zhao, Y. Qin, B. Wen, Nucl. Instrum. Methods Phys. Res. B 269, 1735 (2011)

    Article  ADS  Google Scholar 

  17. P.B. Zhang, J.J. Zhao, Y. Qin, B. Wen, J. Nucl. Mater. 419, 1 (2011)

    Article  ADS  Google Scholar 

  18. P.B. Zhang, J.J. Zhao, Y. Qin, B. Wen, J. Nucl. Mater. 413, 90 (2011)

    Article  ADS  Google Scholar 

  19. P.B. Zhang, J.J. Zhao, B. Wen, J. Nucl. Mater. 429, 216 (2012)

    Article  ADS  Google Scholar 

  20. P.B. Zhang, R.H. Li, J.J. Zhao, B. Wen, Nucl. Instrum. Methods Phys. Res. B 303, 74 (2013)

    Article  ADS  Google Scholar 

  21. H.B. Zhou, S. Jin, Y. Zhang, G.H. Lu, Prog. Nat. Sci. 21, 240 (2011)

    Article  Google Scholar 

  22. H.B. Zhou, J.L. Wang, W. Jiang, G.H. Lu, J.A. Aguiar, F. Liu, Acta Mater. 119, 1 (2016)

    Article  ADS  Google Scholar 

  23. Y.H. Li, H.B. Zhou, G.H. Lu, Int. J. Hydrogen Energy 42, 6902 (2017)

    Article  Google Scholar 

  24. H.B. Zhou, S. Jin, Y. Zhang, G.H. Lu, F. Liu, Phys. Rev. Lett. 109, 13502 (2012)

    Google Scholar 

  25. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  28. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  29. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  30. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  31. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)

  32. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  33. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  34. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  35. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  36. J.P. Perdew et al., Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  37. Y.L. Liu, S. Jin, L. Sun, C. Duan, Comput. Mater. Sci. 54, 32 (2012)

    Article  Google Scholar 

  38. A. Moitra, K. Solanki, Comput. Mater. Sci. 50, 2291 (2011)

    Article  Google Scholar 

  39. W. Xie, X. Liu, W. Chen, H. Zhang, Comput. Mater. Sci. 50, 3397 (2011)

    Article  Google Scholar 

  40. H.L. Park, Y.C. Chung, Comput. Mater. Sci. 49, S297 (2010)

    Article  Google Scholar 

  41. H.B. Zhou, Y.L. Liu, S. Jin, Y. Zhang, G.H. Lu, G.N. Luo, Nucl. Fusion 50, 115010 (2010)

    Article  ADS  Google Scholar 

  42. C.S. Becquart, C. Domain, J. Nucl. Mater. 386–388, 109 (2009)

    Article  Google Scholar 

  43. Y. Yang, Q.F. Han, Z.Y. Zhou, Y.M. Ma, S. Jia, Y.L. Liu, J. Nucl. Mater. 466, 194 (2015)

    Article  ADS  Google Scholar 

  44. C.C. Fu, F. Willaime, Phys. Rev. B 72, 64117 (2005)

    Article  ADS  Google Scholar 

  45. C.S. Becquart, C. Domain, Phys. Rev. Lett. 97, 196402 (2006)

    Article  ADS  Google Scholar 

  46. C.S. Becquart, C. Domain, Nucl. Instrum. Methods Phys. Res. B 255, 23 (2007)

    Article  ADS  Google Scholar 

  47. D.E. Jiang, E.A. Carter, Phys. Rev. B 70, 064102 (2004)

    Article  ADS  Google Scholar 

  48. L.J. Gui, Y.L. Liu, W.T. Wang, S. Jin, Y. Zhang, G.H. Lu, J.E. Yao, J. Nucl. Mater. 442, S688 (2013)

    Article  Google Scholar 

  49. J. Hua, Y.L. Liu, H.S. Li, M.W. Zhao, X.D. Liu, Int. J. Mod. Phys. B 28, 29 (2014)

    Article  Google Scholar 

  50. T. Seletskaia, Y. Osetsky, R.E. Stoller, G.M. Stocks, Phys. Rev. B 78, 134103 (2008)

    Article  ADS  Google Scholar 

  51. J. Hua, Y.L. Liu, H.S. Li, M.W. Zhao, X.D. Liu, Comput. Condens. Matter 3, 1 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Hua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, J., Liu, YL., Zhao, MW. et al. Effects of Cr on H and He trapping and vacancy complexes in V in a fusion environment: a first-principles study. Eur. Phys. J. B 90, 119 (2017). https://doi.org/10.1140/epjb/e2017-80061-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80061-4

Keywords

Navigation