Skip to main content
Log in

Noise-induced extinction in Bazykin-Berezovskaya population model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A nonlinear Bazykin-Berezovskaya prey-predator model under the influence of parametric stochastic forcing is considered. Due to Allee effect, this conceptual population model even in the deterministic case demonstrates both local and global bifurcations with the change of predator mortality. It is shown that random noise can transform system dynamics from the regime of coexistence, in equilibrium or periodic modes, to the extinction of both species. Geometry of attractors and separatrices, dividing basins of attraction, plays an important role in understanding the probabilistic mechanisms of these stochastic phenomena. Parametric analysis of noise-induced extinction is carried out on the base of the direct numerical simulation and new analytical stochastic sensitivity functions technique taking into account the arrangement of attractors and separatrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.D. Bazykin, Nonlinear Dynamics of Interacting Populations (World Scientific, 1998)

  2. F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology (Springer-Verlag, 2001), TAM 40

  3. P. Turchin, Complex Population Dynamics: a Theoretical/Empirical Synthesis (Princeton University Press, 2003)

  4. M. Rietkerk, S.C. Dekker, P.C. de Ruiter, J. van de Koppel, Science 305, 1926 (2004)

  5. R. Lande, S. Engen, B.-E. Saether, Stochastic Population Dynamics in Ecology and Conservation (Oxford University Press, 2003)

  6. L. Ridolfi, P. D’Odorico, F. Laio, Noise-Induced Phenomena in the Environmental Sciences (Cambridge University Press, 2011)

  7. W. Horsthemke, R. Lefever, Noise-Induced Transitions (Springer, 1984)

  8. V.S. Anishchenko, V.V. Astakhov, A.B. Neiman, T.E. Vadivasova, L. Schimansky-Geier, Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development (Springer-Verlag, 2007)

  9. B. Lindner, J. Garcia-Ojalvo, A. Neiman, L. Schimansky-Geier, Phys. Rep. 392, 321 (2004)

    Article  ADS  Google Scholar 

  10. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  11. M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, Stochastic Resonance: from Suprathreshold Stochastic Resonance to Stochastic Signal Quantization (Cambridge University Press, 2008)

  12. J.B. Gao, S.K. Hwang, J.M. Liu, Phys. Rev. Lett. 82, 1132 (1999)

    Article  ADS  Google Scholar 

  13. K. Matsumoto, I. Tsuda, J. Stat. Phys. 31, 87 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  14. Y.-C. Lai, T. Tel, Transient Chaos: Complex Dynamics on Finite Time Scales (Springer, 2011)

  15. L.J.S. Allen, An Introduction to the Stochastic Process With Applications to Biology (Pearson Education, 2003)

  16. B. Spagnolo, D. Valenti, A. Fiasconaro, Math. Biosci. Eng. 1, 185 (2004)

    Article  MathSciNet  Google Scholar 

  17. P. Hänggi, ChemPhysChem 3, 285 (2002)

    Article  Google Scholar 

  18. S. Petrovskii, A. Morozov, H. Malchow, M. Sieber, Eur. Phys. J. B 78, 253 (2010)

    Article  ADS  Google Scholar 

  19. Q. He, M. Mobilia, U.C. Täuber, Eur. Phys. J. B 82, 97 (2011)

    Article  ADS  Google Scholar 

  20. J. Müller, C. Kuttler, Methods and Models in Mathematical Biology: Deterministic and Stochastic Approaches (Springer, 2015)

  21. D. Valenti et al., arXiv:1511.07266v2, to be published in Math. Model. Nat. Phenom. (2016)

  22. S. Kraut, U. Feudel, Phys. Rev. E 66, 015207 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. A.L. Kawczyński, B. Nowakowski, Phys. Chem. Chem. Phys. 10, 289 (2008)

    Article  Google Scholar 

  24. I. Bashkirtseva, A.B. Neiman, L. Ryashko, Phys. Rev. E 87, 052711 (2013)

    Article  ADS  Google Scholar 

  25. D.V. Alexandrov, I. Bashkirtseva, L. Ryashko, Eur. Phys. J. B 89, 62 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. G.A. van Voorn, L. Hemerik, M.P. Boer, B.W. Kooi, Math Biosci. 209, 451 (2007)

    Article  MathSciNet  Google Scholar 

  27. W.Z. Lidicker Jr., Open Ecol. J. 3, 71 (2010)

    Article  Google Scholar 

  28. B. Dennis, Oikos 96, 389 (2002)

    Article  Google Scholar 

  29. J.M. Drake, D.M. Lodge, Biological Invasions 8, 365 (2006).

    Article  Google Scholar 

  30. G.-Q. Sun, Z. Jin, L. Li, Q.-X. Liu, J. Biol. Phys. 35, 185 (2009).

    Article  Google Scholar 

  31. I. Bashkirtseva, L. Ryashko, Chaos 21, 047514 (2011)

    Article  ADS  Google Scholar 

  32. E.M. Hart, L. Avilés, PLoS One 9, e110049 (2014)

    Article  Google Scholar 

  33. C. Kurrer, K. Schulten, Physica D 50, 311 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  34. M.I. Freidlin, A.D. Wentzell, Random Perturbations of Dynamical Systems (Springer, 1984)

  35. I. Bashkirtseva, G. Chen, L. Ryashko, Chaos 22, 033104 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  36. L. Ryashko, I. Bashkirtseva, Phys. Rev. E 83, 061109 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Ryashko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashkirtseva, I., Ryashko, L. Noise-induced extinction in Bazykin-Berezovskaya population model. Eur. Phys. J. B 89, 165 (2016). https://doi.org/10.1140/epjb/e2016-70345-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70345-6

Keywords

Navigation