Skip to main content
Log in

Exploring temporal networks with greedy walks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Temporal networks come with a wide variety of heterogeneities, from burstiness of event sequences to correlations between timings of node and link activations. In this paper, we set to explore the latter by using temporal greedy walks as probes of temporal network structure. Given a temporal network (a sequence of contacts), temporal greedy walks proceed from node to node by always following the first available contact. Because of this, their structure is particularly sensitive to temporal-topological patterns involving repeated contacts between sets of nodes. This becomes evident in their small coverage per step taken as compared to a temporal reference model – in empirical temporal networks, greedy walks often get stuck within small sets of nodes because of correlated contact patterns. While this may also happen in static networks that have pronounced community structure, the use of the temporal reference model takes the underlying static network structure out of the equation and indicates that there is a purely temporal reason for the observations. Further analysis of the structure of greedy walks indicates that burst trains, sequences of repeated contacts between node pairs, are the dominant factor. However, there are larger patterns too, as shown with non-backtracking greedy walks. We proceed further to study the entropy rates of greedy walks, and show that the sequences of visited nodes are more structured and predictable in original data as compared to temporally uncorrelated references. Taken together, these results indicate a richness of correlated temporal-topological patterns in temporal networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)

    Article  ADS  Google Scholar 

  2. A.L. Barabási, Nature 435, 207 (2005)

    Article  ADS  Google Scholar 

  3. A. Vazquez, B. Rácz, A. Lukács, A.L. Barabási, Phys. Rev. Lett. 98, 158702 (2007)

    Article  ADS  Google Scholar 

  4. J. Iribarren, E. Moro, Phys. Rev. Lett. 103, 038702 (2009)

    Article  ADS  Google Scholar 

  5. M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.L. Barabási, J. Saramäki, Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  6. M. Karsai, K. Kaski, A.L. Barabási, J. Kertész, Sci. Rep. 2, 397 (2012)

    Article  ADS  Google Scholar 

  7. L. Kovanen, M. Karsai, K. Kaski, J. Kertész, J. Saramäki, J. Stat. Mech. Theor. Exp. 2011, P11005 (2011)

    Article  Google Scholar 

  8. L. Kovanen, K. Kaski, J. Kertész, J. Saramäki, Proc. Natl. Acad. Sci. USA 110, 18070 (2013)

    Article  ADS  Google Scholar 

  9. I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Nat. Commun. 5, 5024 (2014)

    Article  ADS  Google Scholar 

  10. V.P. Backlund, J. Saramäki, R.K. Pan, Phys. Rev. E 89, 062815 (2014)

    Article  ADS  Google Scholar 

  11. R. Pfizner, I. Scholtes, A. Garas, C. Tessone, F. Schweitzer, Phys. Rev. Lett. 110, 198701 (2013)

    Article  ADS  Google Scholar 

  12. M. Karsai, K. Kaski, J. Kertész, PLoS One 7, e40612 (2012)

    Article  ADS  Google Scholar 

  13. Q. Zhao, Y. Tian, Q. He, N. Oliver, R. Jin, W.C. Lee, Communication motifs: A tool to characterize social communications, in Proc. of the 19th ACM International Conference on Information and Knowledge Management (2010), pp. 1645–1648

  14. N. Perra, A. Baronchelli, D. Mocanu, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 109, 238701 (2012)

    Article  ADS  Google Scholar 

  15. M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 85, 056115 (2012)

    Article  ADS  Google Scholar 

  16. L.E.C. Rocha, N. Masuda, New J. Phys. 16, 063023 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. J.C. Delvenne, R. Lambiotte, L.E.C. Rocha, Nat. Commun. 6, 7366 (2015)

    Article  ADS  Google Scholar 

  18. L. Speidel, R. Lambiotte, K. Aihara, N. Masuda, Phys. Rev. E 91, 012806 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Hoffmann, M.A. Porter, R. Lambiotte, Phys. Rev. E 86, 046102 (2012)

    Article  ADS  Google Scholar 

  20. N. Masuda, K. Klemm, V.M. Eguíluz, Phys. Rev. Lett. 111, 188701 (2013)

    Article  ADS  Google Scholar 

  21. A. Barrat, B. Fernandez, K.K. Lin, L.S. Young, Phys. Rev. Lett. 110, 158702 (2013)

    Article  ADS  Google Scholar 

  22. J.C. Delvenne, S.N. Yaliraki, M. Barahona, Proc. Natl. Acad. Sci. USA 107, 12755 (2010)

    Article  ADS  Google Scholar 

  23. B. Ribeiro, N. Perra, A. Baronchelli, Sci. Rep. 3, 3006 (2013)

    Article  ADS  Google Scholar 

  24. A. Albano, J.L. Guillaume, S. Heymann, B. Le Grand, A matter of time – intrinsic or extrinsic – for diffusion in evolving complex networks, in 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (2013), pp. 202–206

  25. H. Ebel, L.I. Mielsch, S. Bornholdt, Phys. Rev. E 66, 035103 (2002)

    Article  ADS  Google Scholar 

  26. J.P. Eckmann, E. Moses, D. Sergi, Proc. Natl. Acad. Sci. USA 101, 14333 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  27. B. Viswanath, A. Mislove, M. Cha, K.P. Gummadi, On the evolution of user interaction in facebook, in Proc. of the 2nd ACM Workshop on Online Social Networks (ACM, 2009), pp. 37–42

  28. F. Karimi, V.C. Ramenzoni, P. Holme, Physica A 414, 263 (2014)

    Article  ADS  Google Scholar 

  29. P. Vanhems, A. Barrat, C. Cattuto, J.F. Pinton, N. Khanafer, C. Régis, B.A. Kim, B. Comte, N. Voirin, PLoS One 8, e73970 (2013)

    Article  ADS  Google Scholar 

  30. P. Holme, C.R. Edling, F. Liljeros, Soc. Networks 26, 155 (2004)

    Article  Google Scholar 

  31. N. Eagle, A.S. Pentland, D. Lazer, Proc. Natl. Acad. Sci. USA 106, 15274 (2009)

    Article  ADS  Google Scholar 

  32. C.M. Song, Z.H. Qu, N. Blumm, A.L. Barabási, Science 327, 1018 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Takaguchi, M. Nakamura, N. Sato, K. Yano, N. Masuda, Phys. Rev. X 1, 011008 (2011)

    Google Scholar 

  34. J. Ziv, A. Lempel, IEEE Trans. Inform. Theory 23, 337 (1977)

    Article  MathSciNet  Google Scholar 

  35. P. Shields, Ann. Probab. 20, 403 (1992)

    Article  MathSciNet  Google Scholar 

  36. T. Schurmann, P. Grassberger, Chaos 6, 414 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  37. P. Grindrod, M.C. Parsons, D.J. Higham, E. Estrada, Phys. Rev. E 83, 046120 (2011)

    Article  ADS  Google Scholar 

  38. G. Miritello, E. Moro, R. Lara, Phys. Rev. E 83, 045102 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Saramäki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saramäki, J., Holme, P. Exploring temporal networks with greedy walks. Eur. Phys. J. B 88, 334 (2015). https://doi.org/10.1140/epjb/e2015-60660-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60660-9

Keywords

Navigation