We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Stochastic delayed monomer-dimer surface reaction model with various dimer adsorption

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we study the impacts of noise and time delay in the monomer-dimer (MD) surface reaction model by using theoretical analysis. The MD models for various dimer adsorption mechanisms (namely, local and random adsorption models), which exhibit the first- and second-order phase transitions (PTs), are analyzed. By comparison with two various dimer adsorption, it is found that the qualitative predictions of the well-known first- and second-order PTs are better for the random adsorption model than that for the local adsorption model. The validity of approximate analytic results is checked by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. G. Nicolis, I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley & Interscience, New York, 1977)

  2. R. Gallagher, T. Appenzeller, Science 284, 79 (1999)

    Article  Google Scholar 

  3. R.M. Ziff, E. Gulari, Y. Barshad, Phys. Rev. Lett. 56, 2553 (1986)

    Article  ADS  Google Scholar 

  4. R. Imbihl, G. Ertl, Chem. Rev. 95, 697 (1995)

    Article  Google Scholar 

  5. I. Jensen, H.C. Fogedby, R. Dickman, Phys. Rev. A 41, 3411 (1990)

    Article  ADS  Google Scholar 

  6. I. Jensen, H.C. Fogedby, Phys. Rev. A 42, 1969 (1990)

    Article  ADS  Google Scholar 

  7. C.A. Voigt, R.M. Ziff, Phys. Rev. E 56, R6241 (1997)

    Article  ADS  Google Scholar 

  8. D.A. Adams, R.M. Ziff, L.M. Sander, J. Chem. Phys. 133, 174107 (2010)

    Article  ADS  Google Scholar 

  9. R.M. Ziff, B.J. Brosilow, Phys. Rev. A 46, 4630 (1992)

    Article  ADS  Google Scholar 

  10. E.S. Loscar, E.V. Albano, Europhys. Lett. 85, 30004 (2009)

    Article  ADS  Google Scholar 

  11. J.W. Evans, M.S. Miesch, Phys. Rev. Lett. 66, 833 (1991)

    Article  ADS  Google Scholar 

  12. J.W. Evans, T.R. Ray, Phys. Rev. E 50, 4302 (1994)

    Article  ADS  Google Scholar 

  13. R.H. Goodman, D.S. Graff, L.M. Sander, P. Leroux-Hugon, E. Clément, Phys. Rev. E 52, 5904 (1995)

    Article  ADS  Google Scholar 

  14. V.P. Zhdanov, B. Kazemo, Surf. Sci. Rep. 20, 113 (1994)

    Article  ADS  Google Scholar 

  15. J. Mai, V.N. Kuzovkov, W. Von Niessen, J. Chem. Phys. 100, 6073 (1994)

    Article  ADS  Google Scholar 

  16. J. Mai, V.N. Kuzovkov, W. Von Niessen, J. Chem. Phys. 100, 8522 (1994)

    Article  ADS  Google Scholar 

  17. Z. Hou, L. Yang, H. Xin, Phys. Rev. E 58, 234 (1998)

    Google Scholar 

  18. R. Dickman, Phys. Rev. A 34, 4246 (1986)

    Article  ADS  Google Scholar 

  19. Z. Hou, L. Yang, H. Xin, Surf. Sci. 399, 332 (1998)

    Article  ADS  Google Scholar 

  20. C.H. Zeng, H. Wang, Chem. Phys. 402, 1 (2012)

    Article  ADS  Google Scholar 

  21. E.S. Loscar, N. Guisoni, E.V. Albano, Phys. Rev. E 80, 051123 (2009)

    Article  ADS  Google Scholar 

  22. M. Tammaro, J.W. Evans, Phys. Rev. E 52, 2310 (1995)

    Article  ADS  Google Scholar 

  23. J.P. Dath, Th. Fink, R. Imbihl, G. Ertl, J. Chem. Phys. 96, 1582 (1992)

    Article  ADS  Google Scholar 

  24. Y. Hayase, S. Wehner, J. Kppers, H.R. Brand, Phys. Rev. E 69, 021609 (2004)

    Article  ADS  Google Scholar 

  25. S. Wehner, P. Hoffmann, S. Schmeisser, H.R. Brand, J. Küppers, Phys. Rev. Lett. 95, 038301 (2005)

    Article  ADS  Google Scholar 

  26. M. Pineda, L. Schimansky-Geier, R. Imbihl, Phys. Rev. E 75, 061107 (2007)

    Article  ADS  Google Scholar 

  27. M. Pineda, R. Toral, J. Chem. Phys. 130, 124704 (2009)

    Article  ADS  Google Scholar 

  28. J. Cisternas, R. Lecaros, S. Wehner, Eur. Phys. J. D 62, 91 (2011)

    Article  ADS  Google Scholar 

  29. P.S. Bodega, S. Alonso, H.H. Rotermund, J. Chem. Phys. 130, 084704 (2009)

    Article  ADS  Google Scholar 

  30. A. Eldar, M.B. Elowitz, Nature 467, 167 (2010)

    Article  ADS  Google Scholar 

  31. D. Frigola, L. Casanellas, J.M. Sancho, M. Ibañes, PLoS ONE 7, e31407 (2012)

    Article  ADS  Google Scholar 

  32. T.-L. To, N. Maheshri, Science 327, 1142 (2010)

    Article  ADS  Google Scholar 

  33. E. Pujadas, A.P. Feinberg, Cell 148, 1110 (2012)

    Article  Google Scholar 

  34. D. Bratsun, D. Volfson, L.S. Tsimring J. Hasty, Proc. Natl. Acad. Sci. USA 102, 14593 (2005)

    Article  ADS  Google Scholar 

  35. C. Gupta, J.M. Lopez, W. Ott, K. Josic, M.R. Bennett, Phys. Rev. Lett. 111, 058104 (2013)

    Article  ADS  Google Scholar 

  36. D.V.R. Reddy, A. Sen, G.L. Jhonston, Phys. Rev. Lett. 85, 3381 (2000)

    Article  ADS  Google Scholar 

  37. J. García-Ojalvo, R. Roy, Phys. Lett. A 224, 51 (1996)

    Article  ADS  Google Scholar 

  38. C. Masoller, Phys. Rev. Lett. 86, 2782 (2001)

    Article  ADS  Google Scholar 

  39. L.S. Tsimring, A. Pikovsky, Phys. Rev. Lett. 87, 250602 (2001)

    Article  ADS  Google Scholar 

  40. C. Masoller, Phys. Rev. Lett. 90, 020601 (2003)

    Article  ADS  Google Scholar 

  41. X.J. Tian, X.P. Zhang, F. Liu, W. Wang, Phys. Rev. E 80, 011926 (2009)

    Article  ADS  Google Scholar 

  42. T. Turanyi, A. Tomlin, M. Pilling, J. Phys. Chem. 97, 163 (1993)

    Article  Google Scholar 

  43. P. Thomas, A.V. Straube, R. Grima, BMC Syst. Biol. 6, 39 (2012)

    Article  Google Scholar 

  44. C.W. Gardiner, Handbook of Stochastic Methods, 3rd edn. (Springer, Berlin, 2004)

  45. M.R. Bennett, D. Volfson, L. Tsimring, J. Hasty, Biophys. J. 92, 3501 (2007)

    Article  ADS  Google Scholar 

  46. C. Beta, M. Bertram, A.S. Mikhailov, H.H. Rotermund, G. Ertl, Phys. Rev. E 67, 046224 (2003)

    Article  ADS  Google Scholar 

  47. J. Wiener, J.K. Hale, Ordinary and Delay Differential Equations (Wiley, New York, 1992)

  48. S. Guillouzic, I. L’Heureux, A. Longtin, Phys. Rev. E 59, 3970 (1999)

    Article  ADS  Google Scholar 

  49. S. Guillouzic, I. L’Heureux, A. Longtin, Phys. Rev. E 61, 4906 (2000)

    Article  ADS  Google Scholar 

  50. T.D. Frank, Phys. Rev. E 71, 031106 (2005)

    Article  ADS  Google Scholar 

  51. T.D. Frank, Phys. Rev. E 72, 011112 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hua Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, CH., Wang, H., Yang, T. et al. Stochastic delayed monomer-dimer surface reaction model with various dimer adsorption. Eur. Phys. J. B 87, 137 (2014). https://doi.org/10.1140/epjb/e2014-40988-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-40988-4

Keywords

Navigation