Skip to main content
Log in

Influence of the pairwise potential on the tangential momentum accommodation coefficient: a multi-scale study applied to the argon on Pt(111) system

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The tangential momentum accommodation coefficient (TMAC) of argon atoms on a Pt(111) surface has been investigated using a multi-scale computational approach in order to emphasize the effect of the Pt-Ar pairwise potential on this parameter. For the different Pt-Ar pairwise potentials available in the literature, the TMAC has been determined by Molecular Dynamics simulations from the difference of the incident and reflected velocities of projected Ar atoms on the atomistic Pt surface. Temperature and incident angle dependencies of this parameter are also explored. A new Pt-Ar potential has also been calculated using periodic density functional theory computations. The resulting potential successfully reproduced the available experimental data and is compared with the previous empirical potentials. The TMAC deduced from our pairwise potential is 0.42 at T = 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Karniadakis, A. Beskok, N. Aluru, Micro Flows and Nano Flows: Fundamentals and Simulation (Springer, New York, 2005)

  2. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994)

  3. J.C. Maxwell, Phil. Trans. R. Soc. Lond. 170, 231 (1879)

    Article  MATH  Google Scholar 

  4. Q.D. To, C. Bercegeay, G. Lauriat, C. Léonard, G. Bonnet, Microfluid. Nanofluid. 8, 417 (2010)

    Article  Google Scholar 

  5. B. Cao, M. Chen, Z. Guo, Appl. Phys. Lett. 86, 091905 (2005)

    Article  ADS  Google Scholar 

  6. G.W. Finger, J.S. Kapat, A. Bhattacharya, J. Fluids Eng. 129, 31 (2006)

    Article  Google Scholar 

  7. R.A. Buckingham, Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 168, 264 (1938)

    Article  ADS  Google Scholar 

  8. J.E. Hurst, L. Wharton, K.C. Janda, D.J. Auerbach, J. Chem. Phys. 78, 1559 (1983)

    Article  ADS  Google Scholar 

  9. M. Head-Gordon, J.C. Tully, C.T. Rettner, C.B. Mullins, D.J. Auerbach, J. Chem. Phys. 94, 1516 (1991)

    Article  ADS  Google Scholar 

  10. R.J. Smith, A. Kara, S. Holloway, Surf. Sci. 281, 296 (1993)

    Article  ADS  Google Scholar 

  11. R.J.W.E. Lahaye, S. Stolte, A.W. Kleyn, R.J. Smith, S. Holloway, Surf. Sci. 307-309, 187 (1994)

    Article  ADS  Google Scholar 

  12. D. Kulginov, M. Persson, C.T. Rettner, D.S. Bethune, J. Phys. Chem. 100, 7919 (1996)

    Article  Google Scholar 

  13. M. Svanberg, N. Marković, J.B.C. Pettersson, Chem. Phys. 220, 137 (1997)

    Article  Google Scholar 

  14. S. Maruyama, T. Kimura, A Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface, in Proceedings of the 5th ASME-JSME Thermal Engineering Joint Conference San Diego, 1999

  15. S. Maruyama, T. Kimura, Therm. Sci. Eng. 7, 63 (1999)

    Google Scholar 

  16. K. Yamamoto, JSME Int. J. Ser. B 45, 788 (2002)

    Article  ADS  Google Scholar 

  17. P. Spijker, A.J. Markvoort, S.V. Nedea, P.A.J. Hilbers, Phys. Rev. E 81, 011203 (2010)

    Article  ADS  Google Scholar 

  18. J. Sun, Z.-X. Li, Heat Transfer Eng. 32, 658 (2011)

    Article  ADS  Google Scholar 

  19. S.K. Prabha, S.P. Sathian, Phys. Rev. E 85, 041201 (2012)

    Article  ADS  Google Scholar 

  20. J.L.F. Da Silva, C. Stampfl, M. Scheffler, Phys. Rev. B 72, 075424 (2005)

    Article  ADS  Google Scholar 

  21. A. Tkatchenko, Phys. Rev. B 75, 085420 (2007)

    Article  ADS  Google Scholar 

  22. M.C. Righi, M. Ferrario, J. Phys.: Condens. Matter 19, 305008 (2007)

    Article  Google Scholar 

  23. T. Tokumasu, D. Ito, J. Appl. Phys. 109, 063509 (2011)

    Article  ADS  Google Scholar 

  24. P. Zeppenfeld, U. Becher, K. Kern, R. David, G. Comsa, Phys. Rev. B 41, 8549 (1990)

    Article  ADS  Google Scholar 

  25. P. Zeppenfeld, U. Becher, K. Kern, G. Comsa, Phys. Rev. B 45, 5179 (1992)

    Article  ADS  Google Scholar 

  26. M. Svanberg, J.B.C. Pettersson, Chem. Phys. Lett. 263, 661 (1996)

    Article  ADS  Google Scholar 

  27. C. Ramseyer, P.N.M. Hoang, C. Girardet, Phys. Rev. B 49, 2861 (1994)

    Article  ADS  Google Scholar 

  28. R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V.R. Saunders, C.M. Zicovich-Wilson, Z. Kristallogr. 220, 571 (2005)

    Article  Google Scholar 

  29. J.P. Perdrew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  30. K. Doll, Surf. Sci. 573, 464 (2004)

    Article  ADS  Google Scholar 

  31. R. Nada, J.B. Nicholas, M.I. McCarthy, A.C. Hess, Int. J. Quantum Chem. 60, 809 (1996)

    Article  Google Scholar 

  32. K.A. Gschneidner Jr., Solid State Phys. 16, 275 (1964)

    Article  Google Scholar 

  33. E.A. Colbourn, A.E. Douglas, J. Chem. Phys. 65, 1741 (1976)

    Article  ADS  Google Scholar 

  34. D. Eichenauer, U. Harten, J.P. Toennies, J. Chem. Phys. 86, 3693 (1987)

    Article  ADS  Google Scholar 

  35. T.T. Pham, Q.D. To, G. Lauriat, C. Léonard, V.V. Hoang, Phys. Rev. E 86, 051201 (2012)

    Article  ADS  Google Scholar 

  36. P. Yi, D. Poulikakos, J. Walther, A. Yadigaroglu, Int. J. Heat Mass Transfer 45, 2087 (2002)

    Article  MATH  Google Scholar 

  37. T. Schlick, Molecular Modeling and Simulation: an Interdisciplinary Guide (Springer, New York, 2010)

  38. F.M. Modest, Radiative Heat Transfer, 2nd edn. (Academic Press, New York, 2003)

  39. A. Agrawal, S.V. Prabhu, J. Vac. Sci. Technol. 26, 634 (2008)

    Article  Google Scholar 

  40. S.M. Cooper, B.A. Cruden, M. Meyyappan, R. Raju, S. Roy, Nano Lett. 4, 377 (2004)

    Article  ADS  Google Scholar 

  41. E.B. Arkilic, K.S. Breuer, M.A. Schmidt, J. Fluid Mech. 437, 29 (2001)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Léonard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Léonard, C., Brites, V., Pham, T.T. et al. Influence of the pairwise potential on the tangential momentum accommodation coefficient: a multi-scale study applied to the argon on Pt(111) system. Eur. Phys. J. B 86, 164 (2013). https://doi.org/10.1140/epjb/e2013-30809-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30809-9

Keywords

Navigation