Skip to main content
Log in

On clean grain-boundaries involving growth of nonequilibrium crystalline-amorphous superconducting materials addressed by a phenomenological viewpoint

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This study deals with a problem of clean grain-boundary geometric quasi universal feature, and its representative value characteristic of superconducting cuprate polycrystals. The emergence of the superconducting phase goes via a thermally activated and massive, as well as spherulites’ coarsening assisted, nucleation-growth phase transformation. It has been shown by exploiting mainly the space dimension as the principal degree of freedom in transformations of the type that random close packing and self-avoiding walk conceptions, when applied together, corroborate a characteristic value of the fractal grain-boundary dimension, D f = 7/3 ≅ 2.3(3). This value is of practical importance, as provided by computer simulation based on modified Eden-cluster algorithm, and co-supported within a certain accuracy by an accompanying laboratory experiment. A working assumption of the sensitivity of the phase transformation to characteristic time scales has been exploited to accomplish the final goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.-L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

  2. N. Vandewalle, M. Ausloos, J. Crystal Growth 169, 79 (1996)

    Article  ADS  Google Scholar 

  3. A. Gadomski, N. Kruszewska, M. Ausloos, J. Tadych, in Traffic and Granular Flow’05, edited by A. Schadschneider et al. (Springer, Berlin, 2007), pp. 283-296

  4. M. Hillert, Acta Metall. 13, 227 (1965)

    Article  Google Scholar 

  5. R. Cloots, N. Vandewalle, M. Ausloos, J. Crystal Growth 166, 816 (1996)

    Article  ADS  Google Scholar 

  6. N.D. Goldenfeld, J. Cryst. Growth 84, 601 (1987)

    Article  ADS  Google Scholar 

  7. A. Tetervak et al., Phys. Rev. E 71, 051606 (2005)

    Article  ADS  Google Scholar 

  8. T. Marin, G. Nicoletto, Technische Mechanik 30, 227 (2010)

    Google Scholar 

  9. A.J. Guttmann, A.R. Conway, Annals of Combinatorics 5, 319 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Gadomski, Phys. Rev. E 60, 1252 (1999)

    Article  ADS  Google Scholar 

  11. R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983)

  12. C.-J. Kim et al., Physica C 338, 205 (2000)

    Article  ADS  Google Scholar 

  13. R.D. MacPherson, D.J. Srolovitz, Nature 446, 1053 (2007)

    Article  ADS  Google Scholar 

  14. M. Upmanyu et al., Interface Science 10, 201 (2002)

    Article  Google Scholar 

  15. K.J. Kurzydłowski et al., Acta Mater. 44, 3005 (1996)

    Article  Google Scholar 

  16. K.H. Nagamanasa et al., Proc. Natl. Acad. Sci. U.S.A. 108, 11323 (2011)

    Article  ADS  Google Scholar 

  17. C. Deng, C.A. Schuh, Phys. Rev. Lett. 106, 045503 (2011)

    Article  ADS  Google Scholar 

  18. J.W. Christian, The Theory of Transformations in Metals and Alloys, 3rd edn. (Pergamon, Oxford, 2002), pp. 327-377

  19. A. Gadomski, Ber. Bunsenges. Phys. Chem. 100, 134 (1996)

    Article  Google Scholar 

  20. R. Smoluchowski, Phys. Rev. 83, 69 (1951)

    Article  ADS  Google Scholar 

  21. J.M. Rubì, A. Gadomski, Physica A 326, 333 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J.D. Riches, J.A. Alarco, J.C. Barry, Physica C 336, 43 (2000)

    Article  ADS  Google Scholar 

  23. C.-J. Kim et al., Physica C 336, 233 (2000)

    Article  ADS  Google Scholar 

  24. I.I. Mazin, Nature 464, 183 (2010)

    Article  ADS  Google Scholar 

  25. A. Gadomski, J. Łuczka, Inter. J. Quantum Chem. 52, 301 (1994)

    Article  Google Scholar 

  26. A. Czirók, in Fluctuations and Scaling in Biology, edited by T. Vicsek (Oxford University Press, New York, 2001), pp. 48-88

  27. M. Hillert, Metall. Mater. Transact. A 35, 351 (2004)

    Article  Google Scholar 

  28. P. Ruggiero, M. Zanetti, Phys. Rev. B 27, 3001 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Zaanen, B. Hosseinkhani, Phys. Rev. B 70, 060509 (2004)

    Article  ADS  Google Scholar 

  30. A. Gadomski, Eur. Phys. J. B 9, 569 (1999)

    Article  ADS  Google Scholar 

  31. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons, New York, 1993), pp. 1-13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kruszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadomski, A., Kruszewska, N. On clean grain-boundaries involving growth of nonequilibrium crystalline-amorphous superconducting materials addressed by a phenomenological viewpoint. Eur. Phys. J. B 85, 416 (2012). https://doi.org/10.1140/epjb/e2012-30897-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30897-y

Keywords

Navigation