Skip to main content
Log in

Experimental and numerical study of the tantalum single crystal spallation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Using X-microtomography and non equilibrium classical molecular dynamics, we present a study of the elementary processes of spallation of single crystal tantalum. The single crystal is illuminated by a laser pulse which induces the propagation of a strong unsustained shock. The analysed data mainly are number and shape of pores resulting from the tensile inside the material when the incident shock reflects on the opposite face. Experimental pores size distribution exhibits two power laws attributed to the growth and the coalescence stages. The average pore shape is ellipsoid with main axis along the shock axis propagation. This first part is completed by a large scale molecular dynamics simulation mimics at reduced scale the real experiment. After preliminary calculations validating the chosen potential function the formation and shock propagation is detailed. Then we extract from the simulation similar data than in experiment. The pores size distribution shows three power laws identified as the nucleation, the growth and the coalescence stages. The slopes of the two last stages are very similar to the experimental one, confirming the scale invariance of this data as suggested by their analytical form. The general pore shape also is close to the experiment shape but with a different orientation (perpendicular to the shock propagation axis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin, Spall Fracture (Springer-Verlag, New York, Inc., 2003)

  2. J. Thouvenin, Détonique (Eyrolles, Paris, 1997)

  3. A.K. Zurek, W.R. Thissel, J.N. Johnson, D.L. Tonks, R. Hixson, J. Mater. Process. Technol. 60, 261 (1996)

    Article  Google Scholar 

  4. F. Llorca, G. Roy, Shock Compression of Condensed Matter, edited by M.D. Furnish, Y.M. Gupta, J.W. Forbes (2003), pp. 589–592

  5. J. Bontaz-Carion, Y.-P. Pellegrini, Adv. Eng. Mater. 8, 480 (2006)

    Article  Google Scholar 

  6. J.M. Rivas, A.K. Zurek, W.R. Thissell, D.L. Tonks, R.S. Hixson, Metall. Mater. Trans. A 31, 845 (2000)

    Google Scholar 

  7. M.D. Furnish, L.C. Chhabildas, W.D. Reinhart, T.J. Vogler, W.M. Trott, Int. J. Plast. 25, 587 (2009)

    Article  MATH  Google Scholar 

  8. M.D. Furnish, W.D. Reinhart, W.M. Trott, L.C. Chhabildas, T.J. Vogler, Shock Compression of Condensed Matter, edited by M.D. Furnish, M. Elert, T.P. Russel, C.T. White (2005), pp. 615–618

  9. N.J. Wagner, B.L. Holian, A.F Voter, Phys. Rev. A 45, 8457 (1992)

    Article  ADS  Google Scholar 

  10. W.C. Morrey, L.T. Wille, Comput. Mater. Sci. 10, 432 (1998)

    Article  Google Scholar 

  11. A. Strachan, T. Cagin, W.A. Goddard III, Phys. Rev. B 63, 060103(R) (2001)

    Article  ADS  Google Scholar 

  12. V. Dremov, A. Petrovtsev, Ph. Sapozhnikov, M. Smirnova, D.L. Preston, M.A. Zocher, Phys. Rev. B 74, 144110 (2006)

    Article  ADS  Google Scholar 

  13. S.-N. Luo, T.C. Germann, D.L. Tonks, Q. An, J. Appl. Phys. 108, 093526 (2010)

    Article  ADS  Google Scholar 

  14. J.-P. Cuq-Lelandais, Ph.D. Thesis, ENSMA, Poitiers, France, 2010

  15. A.C. Mitchell, W.J. Nellis, J. Appl. Phys. 52, 3363 (1981)

    Article  ADS  Google Scholar 

  16. S.A. Novikov, A.V. Chernov, Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 5, 126 (1982)

    Google Scholar 

  17. G. Roy, Ph.D. Thesis, Poitiers University, France, 2003

  18. J. Bontaz-Carion, M. Nicollet, Ph. Manczur, Y.-P. Pellegrini, E. Boller, J. Baruchet, Impact Engineering and Application edited by A. Chiba, S. Tanimura, K. Hokamoto (2001)

  19. J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976)

    Article  ADS  Google Scholar 

  20. Y.L. Donald, J. Siegel, J.B. Adams, X.-Y. Liu, Phys. Rev. B 67, 125101 (2003)

    Article  ADS  Google Scholar 

  21. Z.-L. Liu, L.-C. Cai, X.-R. Chen, F.-Q. Jing, Phys. Rev. B 77, 024103 (2008)

    Article  ADS  Google Scholar 

  22. J.Y. Yang, R.T. Hong, M.J. Huang, Mater. Sci. Semicon. Process. 8, 622 (2005)

    Article  Google Scholar 

  23. R.A. Johnson, Phys. Rev. B 37, 3924 (1988)

    Article  ADS  Google Scholar 

  24. H.N.G. Wadley, X. Zhou, R.A. Johnson, M. Neirock, Prog. Mater. Sci. 46, 329 (2001)

    Article  Google Scholar 

  25. F.H. Featherston, J.R. Neighbours, Phys. Rev. 130, 1324 (1963)

    Article  ADS  Google Scholar 

  26. H. Cynn, C.S. Yoo, Phys. Rev. B 59, 8526 (1999)

    Article  ADS  Google Scholar 

  27. M. Hanfland, K. Syassena, J. Kohler, J. Appl. Phys. 91, 4143 (2002)

    Article  ADS  Google Scholar 

  28. A. Dewaele, P. Loubeyre, M. Mezouar, Phys. Rev. B 70, 094112 (2004)

    Article  ADS  Google Scholar 

  29. A.K. Verma, R.S. Rao, B.K. Godwal, J. Phys.: Condens. Matter 16, 4799 (2004)

    Article  ADS  Google Scholar 

  30. Y. Wang, R. Ahuja, B. Johansson, J. Appl. Phys. 92, 6616 (2002)

    Article  ADS  Google Scholar 

  31. Z.-L. Liu, L.-C. Cai, X.-R. Chen, Q. Wu, F.-Q. Jing, J. Phys.: Condens. Matter 21, 095408 (2009)

    Article  ADS  Google Scholar 

  32. Z.-L. Liu, X.-L. Zhang, L.-C. Cai, X.-R. Chen, Q. Wu, F.-Q. Jing, J. Phys. Chem. Sol. 69, 2833 (2009)

    Article  ADS  Google Scholar 

  33. R.E. Cohen, O. Gülseren, Phys. Rev. B 63, 224101 (2001)

    Article  ADS  Google Scholar 

  34. W.J. Nellis, A.C. Mitchell, D.A. Young, J. Appl. Phys. 93, 304 (2003)

    Article  ADS  Google Scholar 

  35. J.-B. Maillet, G. Stoltz, Appl. Math. Res. Express abn004 (2009)

  36. L. Soulard, Shock Compression of Condensed Matter edited by M.D. Furnish, L.C. Chhabildas, R.S. Hixson (1999), p. 185

  37. J.-B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P.S. Lomdahl, T.C. Germann, B.L. Holian, Phys. Rev. E 63, 016121 (2000)

    Article  ADS  Google Scholar 

  38. C. Dai, J. Hu, H. Tan, J. Appl. Phys. 106, 043519 (2009)

    Article  ADS  Google Scholar 

  39. A. Dewaele, M. Mezouar, N. Guignot, P. Loubeyre, Phys. Rev. Lett. 104, 255701 (2010)

    Article  ADS  Google Scholar 

  40. D. Errandonea, B. Schwager, R. Ditz, Ch. Gessmann, R. Boehler, M. Ross, Phys. Rev. B 63, 132104 (2000)

    Article  ADS  Google Scholar 

  41. D. Errandonea, M. Somayazulu, D. Häusermann, H.K. Mao, J. Phys.: Condens. Matter 15, 7635 (2003)

    Article  ADS  Google Scholar 

  42. M. Foata-Prestavoine, G. Robert, M.-H. Nadal, S. Bernard, Phys. Rev. B 76, 104104 (2007)

    Article  ADS  Google Scholar 

  43. S.-N. Luo, D.C. Swift, Physica B 388, 139 (2007)

    Article  ADS  Google Scholar 

  44. F. Xi, L. Cai, Physica B 403, 2065 (2008)

    Article  ADS  Google Scholar 

  45. J.A. Moriarty, J.F. Belak, R.E. Rudd, P. Söderlind, F.H. Streitz, Lin H Yang, J. Phys.: Condens. Matter 14, 2825 (2002)

    Article  ADS  Google Scholar 

  46. S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman. Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  47. S.-S. Wellershoff, J. Hohlfeld, J. Güde, E. Matthias, Appl. Phys. A 69, S99 (2003)

    Google Scholar 

  48. R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Phys. Rev. Lett. 58, S1680 (1987)

    Article  ADS  Google Scholar 

  49. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  50. L. Soulard, Eur. Phys. J. D 50, 241 (2008)

    Article  ADS  Google Scholar 

  51. M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, P.S. Komarov, A.V. Ovchinnikov, V.E. Fortov, V.A. Khokhlov, V.V. Shepelev, JETP Lett. 91, 517 (2010)

    Article  Google Scholar 

  52. V.V. Zhakhovskii, N.A. Inogamov, JETP Lett. 92, 521 (2010)

    Article  ADS  Google Scholar 

  53. B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Phys. Rev. B 82, 064113 (2006)

    Article  ADS  Google Scholar 

  54. F. Family, P. Meakin, Phys. Rev. Lett. 61, 428 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Soulard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soulard, L., Bontaz-Carion, J. & Cuq-Lelandais, J.P. Experimental and numerical study of the tantalum single crystal spallation. Eur. Phys. J. B 85, 332 (2012). https://doi.org/10.1140/epjb/e2012-30269-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30269-9

Keywords

Navigation