Skip to main content
Log in

Achieving high molecular conversion efficiency via a magnetic field pulse train

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the process of production of ultracold molecules in an ultracold bosonic system with particle interaction via designing a magnetic field pulse train near a Feshbach resonance. This technique offers a high conversion efficiency up to 100% by tuning the pulse durations appropriately. The molecular conversion efficiency is related to the duration of each pulse, which can be derived analytically. It is found that the conversion efficiency is insensitive to the first pulse, highly sensitive to the second one, and very insensitive to the third one. The effects of particle interaction on conversion process are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009)

    Article  ADS  Google Scholar 

  2. E.R. Hudson, H.J. Lewandowski, B.C. Sawyer, J. Ye, Phys. Rev. Lett. 96, 143004 (2006)

    Article  ADS  Google Scholar 

  3. S. Ospelkaus et al., Science 327, 853 (2010)

    Article  ADS  Google Scholar 

  4. D. DeMille, Phys. Rev. Lett. 88, 067901 (2002)

    Article  ADS  Google Scholar 

  5. T. Kraemer et al., Nature 440, 315 (2006)

    Article  ADS  Google Scholar 

  6. L.B. Fu, J. Liu, Ann. Phys. 325, 2425 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. H.R. Thorsheim, J. Weiner, P.S. Julienne, Phys. Rev. Lett. 58, 2420 (1987)

    Article  ADS  Google Scholar 

  8. P.D. Lett, K. Helmerson, W.D. Phillips, L.P. Ratliff, S.L. Rolston, M.E. Wagshul, Phys. Rev. Lett. 71, 2200 (1993)

    Article  ADS  Google Scholar 

  9. S. Inouye, M.R. Andrews, J. Stenger, H.J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature 392, 151 (1998)

    Article  ADS  Google Scholar 

  10. J. Stenger et al., Phys. Rev. Lett. 82, 2422 (1999)

    Article  ADS  Google Scholar 

  11. J. Liu, B. Liu, L.B. Fu, Phys. Rev. A 78, 013618 (2008)

    Article  ADS  Google Scholar 

  12. J. Liu, L.B. Fu, B. Liu, B. Wu, New J. Phys. 10, 123018 (2008)

    Article  ADS  Google Scholar 

  13. D.J. Papoular, G.V. Shlyapnikov, J. Dalibard, Phys. Rev. A 81, 041603 (2010)

    Article  ADS  Google Scholar 

  14. M. Mackie, M. Fenty, D. Savage, J. Kesselman, Phys. Rev. Lett. 101, 040401 (2008)

    Article  ADS  Google Scholar 

  15. P. Pellegrini, M. Gacesa, R. Côté, Phys. Rev. Lett. 101, 053201 (2008)

    Article  ADS  Google Scholar 

  16. P.I. Schneider, A. Saenz, Phys. Rev. A 80, 061401 (2009)

    Article  ADS  Google Scholar 

  17. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  18. T. Köler, K. Gáal, P.S. Julienne, Rev. Mod. Phys. 78, 1311 (2006)

    Article  ADS  Google Scholar 

  19. E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wieman, Nature 417, 529 (2002)

    Article  ADS  Google Scholar 

  20. S.T. Thompson, E. Hodby, C.E. Wieman, Phys. Rev. Lett. 95, 190404 (2005)

    Article  ADS  Google Scholar 

  21. T.M. Hanna, T. Köhler, K. Burnett, Phys. Rev. A 75, 013606 (2007)

    Article  ADS  Google Scholar 

  22. S.B. Papp, C.E. Wieman, Phys. Rev. Lett. 97, 180404 (2006)

    Article  ADS  Google Scholar 

  23. B. Liu, L.B. Fu, J. Liu, Phys. Rev. A 81, 013602 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. S. Jochim et al., Science 302, 2101 (2003)

    Article  ADS  Google Scholar 

  25. J. Cubizolles et al., Phys. Rev. Lett. 91, 240401 (2003)

    Article  ADS  Google Scholar 

  26. S. Jochim et al., Phys. Rev. Lett. 91, 240402 (2003)

    Article  ADS  Google Scholar 

  27. M.W. Zwierlein et al., Science 311, 492 (2006)

    Article  ADS  Google Scholar 

  28. K. Xu, T. Mukaiyama, J. Abo-Shaeer, J. Chin, D. Miller, W. Ketterle, Phys. Rev. Lett. 91, 210402 (2003)

    Article  ADS  Google Scholar 

  29. E. Hodby, S.T. Thompson, C.A. Regal, M. Greiner, A.C. Wilson, D.S. Jin, E.A. Cornell, Phys. Rev. Lett. 94, 120402 (2005)

    Article  ADS  Google Scholar 

  30. M. Mark et al., Europhys. Lett. 69, 706 (2005)

    Article  ADS  Google Scholar 

  31. J.J. Zirbel et al., Phys. Rev. A 78, 013416 (2008)

    Article  ADS  Google Scholar 

  32. M.L. Olsen, J.D. Perreault, T.D. Cumby, D.S. Jin, Phys. Rev. A 80, 030701 (2009)

    Article  ADS  Google Scholar 

  33. X.Q. Xu, L.H. Lu, Y.Q. Li, Phys. Rev. A 80, 033621 (2009)

    Article  ADS  Google Scholar 

  34. J. Li, D.F. Ye, C. Ma, L.B. Fu, J. Liu, Phys. Rev. A 79, 025602 (2009)

    Article  ADS  Google Scholar 

  35. L. Zhou, W.P. Zhang, H.Y. Ling, L. Jiang, H. Pu, Phys. Rev. A 75, 043603 (2007)

    Article  ADS  Google Scholar 

  36. V.A. Yurovsky, A. Ben-Reuven, P.S. Julienne, C.J. Williams, Phys. Rev. A 62, 043605 (2000)

    Article  ADS  Google Scholar 

  37. R.A. Duine, H.T.C. Stoof, Phys. Rev. Lett. 91, 150405 (2003)

    Article  ADS  Google Scholar 

  38. M. Mackie, K. Härkönen, A. Collin, K.A. Suominen, J. Javanainen. 70, 013614 (2004)

    Google Scholar 

  39. A.S. Parkins, D.F. Walls, Phys. Rep. 303, 1 (1998)

    Article  ADS  Google Scholar 

  40. E.A. Donley, N.R. Claussen, S.L. Cornish, J.L. Roberts, E.A. Cornell, C.E. Wieman, Nature 412, 295 (2001)

    Article  ADS  Google Scholar 

  41. E. Eisenberg, K. Heldand, B.L. Altshuler, Phys. Rev. Lett. 88, 136801 (2002)

    Article  ADS  Google Scholar 

  42. S.J.J.M.F. Kokkelmans, M.J. Holland, Phys. Rev. Lett. 89, 180401 (2002)

    Article  ADS  Google Scholar 

  43. M. Mackie, K.A. Suominen, J. Javanainen, Phys. Rev. Lett. 89, 180403 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Q. Dou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, F.Q., Li, S.C. Achieving high molecular conversion efficiency via a magnetic field pulse train. Eur. Phys. J. B 85, 188 (2012). https://doi.org/10.1140/epjb/e2012-20990-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20990-8

Keywords

Navigation