Skip to main content
Log in

Participation ratio and fidelity analyses as tools to study BCS-BEC crossover

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Solving Bogoliubov-de Gennes (BdG) equations for a two dimensional Hubbard model with random on-site disorder, we compute the participation ratio and fidelity to establish conviction for a BCS-BEC crossover scenario at intermediate values of disorder proposed earlier [P. Dey, S. Basu, J. Phys.: Condens. Matter 20, 485205 (2008)]. The participation ratio analysis suggests the onset of a phase with shrunk pairs extending over moderate number of lattice sites, which however preserves the superfluid character. The fidelity or the ground state overlap for two different (but closely lying) values of the disorder strength shows an abrupt drop at the immediate neighbourhood of the disorder strength where an onset of a paired (bose-like) phase occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Eagles, Phys. Rev. 186, 456 (1969)

    Article  ADS  Google Scholar 

  2. A.J. Leggett, Modern Trends in the Theory of Condensed Matter, Springer-Verlag, Berlin (1980)

  3. P. Nozieres, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  4. G. Orso, Phys. Rev. Lett. 99, 250402 (2007)

    Article  ADS  Google Scholar 

  5. L. Han, C.A.R. Sá de Melo (2009) arXiv: 0904.4197v1

  6. L. Han, C.A.R. Sá de Melo (2010) arXiv: 1012.2293v1

  7. P. Dey, S. Basu, J. Phys.: Condens. Matter 20, 485205 (2008)

    Article  Google Scholar 

  8. T. Guhr, A. Muller-Groeling, H.A. Weidenmuller, Phys. Rep. 299, 189 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. A.D. Mirlin, Phys. Rep. 326, 259 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  10. F. Evers, A.D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000)

    Article  ADS  Google Scholar 

  11. C.M. Soukoulis, E.N. Economou, Phys. Rev. Lett. 52, 565 (1984)

    Article  ADS  Google Scholar 

  12. M. Schreiber, Phys. Rev. B 31, 6146 (1985)

    Article  ADS  Google Scholar 

  13. R. Klesse, M. Metzler, Europhys. Lett. 32, 229 (1995)

    Article  ADS  Google Scholar 

  14. S.-R. Eric Yang, A.H. MacDonald, B. Huckestein, Phys. Rev. Lett. 74, 3229 (1995)

    Article  ADS  Google Scholar 

  15. B. Huckestein, Rev. Mod. Phys. 67, 357 (1995)

    Article  ADS  Google Scholar 

  16. B. Huckestein, B. Kramer, Phys. Rev. Lett. 64, 1437 (1990)

    Article  ADS  Google Scholar 

  17. K. Pracz, M. Janssen, P. Freche, J. Phys.: Condens. Matter 8, 7147 (1996)

    Article  ADS  Google Scholar 

  18. Y. Ono, T. Ohtsuki, B. Kramer, J. Phys. Soc. Jpn 58, 1705 (1989)

    Article  ADS  Google Scholar 

  19. R.G. Endres, D.L. Cox, R.R.P. Singh, Rev. Mod. Phys. 76, 195 (2004)

    Article  ADS  Google Scholar 

  20. R.S. Whitney, Phys. Rev. B 75, 235404 (2007)

    Article  ADS  Google Scholar 

  21. O. Giraud, J. Martin, B. Georgeot, Phys. Rev. A 76, 042333 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. A. Kopp, X. Jia, S. Chakravarty, Ann. Phys. 322, 1466 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. P. Zanardi, N. Paunković, Phys. Rev. E 74, 031123 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  24. Shi-Jian Gu, Shu-Sa Deng, You-Quan Li, Hai-Qing Lin, Phys. Rev. Lett. 93, 086402 (2004)

    Article  ADS  Google Scholar 

  25. A. Anfossi, P. Giorda, A. Montorsi, F. Traversa, Phys. Rev. Lett. 95, 056402 (2005)

    Article  ADS  Google Scholar 

  26. A. Anfossi, C.D.E. Boschi, A. Montorsi, F. Ortolani, Phys. Rev. B 73, 085113 (2006)

    Article  ADS  Google Scholar 

  27. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature (London) 416, 608 (2002)

    Article  ADS  Google Scholar 

  28. J. Vidal, R. Mosseri, J. Dukelsky, Phys. Rev. A 69, 054101 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  29. J. Vidal, R. Mosseri, J. Dukelsky, Phys. Rev. A 69, 022107 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Buonsante, A. Vezzani, Phys. Rev. Lett. 98, 110601 (2007)

    Article  ADS  Google Scholar 

  31. N. Oelkers, J. Links, Phys. Rev. B 75, 115119 (2007)

    Article  ADS  Google Scholar 

  32. M.-F. Yang, Phys. Rev. B 76, (R)180403 (2007)

  33. A. Hamma, W. Zhang, S. Haas, D.A. Lidar, Phys. Rev. B 77, 155111 (2008)

    Article  ADS  Google Scholar 

  34. A. Khan, P. Pieri, Phys. Rev. A 80, 012303 (2009)

    Article  ADS  Google Scholar 

  35. F. Wegner, Z. Physik B 36, 209 (1980)

    Article  ADS  Google Scholar 

  36. B. Kramer, Springer Ser. Solid State Sci. 83, 138 (1998)

    Article  Google Scholar 

  37. S. Chakravarty, Int. J. Mod. Phys. B 24, 1823 (2010)

    Article  ADS  MATH  Google Scholar 

  38. W.-L. You, Y.-W. Li, S.-J. Gu, Phys. Rev. E 76, 022101 (2007)

    Article  ADS  Google Scholar 

  39. P. Dey, S. Basu, Int. J. Mod. Phys. 23, 4245 (2009)

    Article  ADS  MATH  Google Scholar 

  40. A. Ghosal, N. Trivedi, M. Randeria, Phys. Rev. Lett. 81, 3940 (1998)

    Article  ADS  Google Scholar 

  41. A. Ghosal, N. Trivedi, M. Randeria, Phys. Rev. B 63, 020505(R) (2000)

    Article  Google Scholar 

  42. A. Ghosal, N. Trivedi, M. Randeria, Phys. Rev. B 65, 014501 (2001)

    Article  ADS  Google Scholar 

  43. B. Srinivasan, G. Benenti, D.L. Shepelyansky, Phys. Rev. B 66, 172506 (2002)

    Article  ADS  Google Scholar 

  44. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L.S. Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008)

    Article  ADS  Google Scholar 

  45. L. Palencia, M. Lewenstein, Nature Phys. 6, 87 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Dey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dey, P., Sarkar, D., Khan, A. et al. Participation ratio and fidelity analyses as tools to study BCS-BEC crossover. Eur. Phys. J. B 81, 95–102 (2011). https://doi.org/10.1140/epjb/e2011-10907-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10907-6

Keywords

Navigation