Skip to main content
Log in

Nonlinear optical absorption in graded quantum wells modulated by electric field and intense laser field

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The laser field dependence of the linear and nonlinear intersubband optical absorption in a graded quantum well (GQW) under an applied electric field is investigated in the effective mass approximation. In our calculations, the position and the magnitude of the linear and total absorption coefficients depend on the laser parameter and electric field strength. The resonant peak of total absorption coefficient can be bleached at sufficiently high incident optical intensities. Such a dependence of the exciting optical intensity on the external field strengths in GQWs can be very useful for several potential device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D. Coon, R.P.G. Karunasiri, Appl. Phys. Lett. 45, 649 (1984)

    Article  ADS  Google Scholar 

  2. B.F. Levine, C.G. Bethea, K.K. Choi, J. Walker, R.J. Malik, Appl. Phys. Lett. 53, 231 (1988)

    Article  ADS  Google Scholar 

  3. Y. Huang, C. Lien, T.-F. Lei, J. Appl. Phys. 74, 2598 (1993)

    Article  ADS  Google Scholar 

  4. D. Ahn, S.L. Chuang, J. Appl. Phys. 62, 3052 (1987)

    Article  ADS  Google Scholar 

  5. L.N. Pandey, T.F. George, Appl. Phys. Lett. 61, 1081 (1992)

    Article  ADS  Google Scholar 

  6. P. Sitarek, K. Ryczko, G. Sek, J. Misiewicz, M. Fischer, M. Reinhardt, A. Forchel, Solid-State Electron. 47, 489 (2003)

    Article  ADS  Google Scholar 

  7. N.G. Semaltianos, J. Phys. Chem. Sol. 63, 273 (2002)

    Article  ADS  Google Scholar 

  8. V. Albe, L.J. Lewis, Physica B 301, 233 (2001)

    Article  ADS  Google Scholar 

  9. R. Dingle, W. Wiegman, C.H. Henry, Phys. Rev. Lett. 33, 827 (1974)

    Article  ADS  Google Scholar 

  10. A. Harwitt, J.S. Harris Jr., Appl. Phys. Lett. 50, 685 (1987)

    Article  ADS  Google Scholar 

  11. D.D. Yang, F.H. Julien, P. Boucaud, J.M. Lourtioz, R. Planel, Phot. Tech. Lett. IEEE 2, 181 (1990)

    Article  ADS  Google Scholar 

  12. A. Fenigstein, A. Fraenkel, E. Finkman, G. Bahir, S.E. Schacham, Appl. Phys. Lett. 66, 2513 (1995)

    Article  ADS  Google Scholar 

  13. L.C. West, S.J. Eglash, Appl. Phys. Lett. 46, 1156 (1985)

    Article  ADS  Google Scholar 

  14. R.J. Turton, M. Jaros, Appl. Phys. Lett. 47, 1986 (1989)

    Article  ADS  Google Scholar 

  15. F. Capasso, K. Mohammed, A.Y. Cho, Appl. Phys. Lett. 48, 478 (1986)

    Article  ADS  Google Scholar 

  16. K.W. Gossen, S.A. Lyon, Appl. Phys. Lett. 47, 289 (1985)

    Article  Google Scholar 

  17. K.K. Choi, B.F. Levine, C.G. Bethea, J. Walker, R.J. Malik, Appl. Phys. Lett. 50, 1814 (1987)

    Article  ADS  Google Scholar 

  18. D. Ahn, S.L. Chuang, Phys. Rev. B 35, 4149 (1987)

    Article  ADS  Google Scholar 

  19. D. Ahn, S.L. Chuang, Phys. Rev. B 34, 9034 (1986)

    Article  ADS  Google Scholar 

  20. R.P.G. Karunasiri, Y.J. Mii, K.L. Wang, IEEE Electron Dev. Lett. 11, 227 (1990)

    Article  ADS  Google Scholar 

  21. S. Noda, T. Uemura, T. Yamashita, A. Sasaki, J. Appl. Phys. 68, 6529 (1990)

    Article  ADS  Google Scholar 

  22. R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  23. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  24. E. Ozturk, I. Sokmen, Superlattices Microstruct. 41, 36 (2007)

    Article  ADS  Google Scholar 

  25. I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)

    Article  ADS  Google Scholar 

  26. B. Chen, K-X. Guo, R-Z. Wang, Z-H. Zhang, Z-L. Liu, Solid State Commun. 149, 310 (2009)

    Article  ADS  Google Scholar 

  27. E. Ozturk, H. Sari, I. Sokmen, Eur. Phys. J. Appl. Phys. 35, 1 (2006)

    Article  ADS  Google Scholar 

  28. E. Ozturk, H. Sari, I. Sokmen, Appl. Phys. A 80, 541 (2005)

    Article  ADS  Google Scholar 

  29. E. Ozturk, H. Sari, I. Sokmen, J. Phys. D: Appl. Phys. 38, 935 (2005)

    Article  ADS  Google Scholar 

  30. E. Kasapoglu, I. Sokmen, Physica B 403, 3746 (2008)

    Article  ADS  Google Scholar 

  31. F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. Da Silva Jr., J. Appl. Phys. 105, 123111 (2009)

    Article  ADS  Google Scholar 

  32. D.A.B. Miller, D.S. Chemla, S. Schmitt-Rink, Phys. Rev. B 33, 6976 (1986)

    Article  ADS  Google Scholar 

  33. M.N. Islam, R.L. Hillman, D.A.B. Miller, D.S. Chemla, A.C. Gossard, J.H. English, Appl. Phys. Lett. 50, 1098 (1987)

    Article  ADS  Google Scholar 

  34. P.F. Yuh, K.L. Wang, IEEE J. Quantum Electron. QE-25, 1671 (1989)

    Article  ADS  Google Scholar 

  35. E. Ozturk, H. Sari, I. Sokmen, Solid State Commun. 132, 497 (2004)

    Article  ADS  Google Scholar 

  36. H. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956), p. 866

    Google Scholar 

  37. H.S. Bradi, G. Jalbert, Solid State Commun. 113, 207 (2000)

    Article  Google Scholar 

  38. D. Ahn, S.L. Chuang, IEEE J. Quantum Electron. QE-23, 2196 (1987)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ozturk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, E. Nonlinear optical absorption in graded quantum wells modulated by electric field and intense laser field. Eur. Phys. J. B 75, 197–203 (2010). https://doi.org/10.1140/epjb/e2010-00133-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00133-3

Keywords

Navigation