Skip to main content
Log in

Quantitative analysis of gold nanoparticles from synchrotron data by means of least-squares techniques

Least-squares analysis of gold nanoparticles

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Powder samples of thiol-capped gold nanoparticles in the size range of 2-4 nm were quantitatively characterized by means of synchrotron X-ray diffraction data, with respect to their structure, size and strain distributions. A novel Rietveld-like approach was applied, refining domain size distribution, strain-size dependence and structure type concentrations. Three structure types (cuboctahedron, icosahedron, decahedron) were considered in this analysis and a detail study of the strain content was performed by comparing different models. The results showed a strong influence of the strain model and a careful analysis is presented. Final domain size and strain distributions agree well with the existence of both single-domain and imperfectly formed or multi-domain nanoparticles, but the final strain profiles seem to be mostly related to the different degree of structural perfection at different sizes as a result of the synthesis process. The present work represents an important step towards the development of robust methods to determine strain profiles in nanosystems, aiming to fulfill the description of these important but complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ino, J. Phys. Soc. Jpn 21, 346 (1966)

    Google Scholar 

  2. S. Ino, S. Ogawa, J. Phys. Soc. Jpn 22, 1365 (1967)

    Google Scholar 

  3. S. Ino, J. Phys. Soc. Jpn 26, 1559 (1969)

    Google Scholar 

  4. S. Ino, J. Phys. Soc. Jpn 27, 941 (1969)

    Google Scholar 

  5. L.D. Marks, Rep. Prog. Phys. 57, 603 (1994)

    Article  Google Scholar 

  6. D.A. Handley, Colloidal Gold: Principles Methods and Applications, Vol. 1 (Academic Press, New York, 1989), pp. 13-32

  7. G. Schmid, A. Lehnert, Angew. Chem. Int. Ed. Engl. 28, 780 (1989)

    Article  Google Scholar 

  8. M. Brust, J. Fink, D. Bethell, D.J. Schiffrin, C. Kienly, Chem. Comm. 16, 1655 (1995)

    Article  Google Scholar 

  9. L.O. Brown, J.E. Hutchison, J. Am. Chem. Soc. 121, 882 (1999)

    Article  Google Scholar 

  10. L. Quaroni, G. Chumanov, J. Am. Chem. Soc. 121, 10642 (1999)

    Article  Google Scholar 

  11. L. Rivas, S. Sanchez-Cortes, J.V. Garcia-Ramos, G. Morcillo, Langmuir 17, 574 (2001)

    Article  Google Scholar 

  12. B.G. Erchov, N.L. Suchov, E. Janata, J. Phys. Chem. B 104, 6138 (2000)

    Article  Google Scholar 

  13. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Science 291, 2115 (2001)

    Article  Google Scholar 

  14. V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Appl. Phys. Lett. 78, 2187 (2001)

    Article  Google Scholar 

  15. M.R. Diehl, J.Y. Yu, J.R. Heath, G.A. Held, H. Doyle, S.H. Sun, C.B. Murray, J. Phys. Chem. B 105, 7913 (2001)

    Article  Google Scholar 

  16. W. Vogel, J. Bradley, O. Vollmer, I. Abraham, J. Phys. Chem. B 102, 10853 (1998)

    Article  Google Scholar 

  17. D. Zanchet, B.H. Hall, D. Ugarte, J. Phys. Chem. B 104, 11013 (2000)

    Article  Google Scholar 

  18. B.D. Hall, J. Appl. Phys. 87, 1666 (2000)

    Article  Google Scholar 

  19. A. Cervellino, C. Giannini, A. Guagliardi, J. Appl. Cryst. 36, 1148 (2003)

    Article  Google Scholar 

  20. G. D’Agostino, A. Pinto, S. Mobilio, Phys. Rev. B 48, 14447 (1993)

    Article  Google Scholar 

  21. C.L. Cleveland, U. Landman, T.G. Schaaff, M.N. Shafigullin, P.M. Stephens, R. Whetten, Phys. Rev. Lett. 79, 1873 (1997)

    Article  Google Scholar 

  22. I.L. Garzón, A. Posada-Amarillas, Phys. Rev. B 54, 11796 (1996)

    Article  Google Scholar 

  23. A. Howie, L.D. Marks, Phil. Mag. A 49, 95 (1984)

    Google Scholar 

  24. D. Zanchet, H. Tolentino, M.C. Alves, O.L. Alves, D. Ugarte, Chem. Phys. Lett. 323, 167 (2000)

    Article  Google Scholar 

  25. L.F. Kiss, J. Söderlund, G.A. Niklasson, C.G. Granqvist, Nanotechnology 10, 25 (1999)

    Article  Google Scholar 

  26. R.A. Young, The Rietveld method, edited by R.A. Young (IUCr, Oxford, 1993), Chap. 1 - Introduction to the Rietveld method

  27. B.E. Warren, B.L. Averbach, J. Appl. Phys. 21, 595 (1950)

    Google Scholar 

  28. B.E. Warren, B.L. Averbach, J. Appl. Phys. 23, 497 (1952)

    Google Scholar 

  29. B.E. Warren, X-ray diffraction (Addison Wesley, Menlo Park, 1969), Chap. 13, pp. 251-314

  30. G. Fagherazzi, A. Benedetti, A. Martorana, S. Giuliano, D. Duca, G. Deganello, Catalysis Lett. 6, 263 (1990)

    Google Scholar 

  31. A. Martorana, G. Deganello, D. Duca, A. Benedetti, G. Fagherazzi, J. Appl. Cryst. 25, 31 (1992)

    Article  Google Scholar 

  32. Z. Kaszkur, J. Appl. Cryst. 33, 87 (2000)

    Article  Google Scholar 

  33. S.C. Hendy, J.P.K. Doye, Phys. Rev. B 66, 235402 (2002)

    Article  Google Scholar 

  34. A. Guinier, X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, Reprint edn. (Dover Publications, Dover, 1994), Chap. 2, pp. 27-54

  35. B. Crist, J.B. Cohen, J. Polym. Sci. Polym. Phys. Ed. 17, 1001 (1979)

    Article  Google Scholar 

  36. P.E. Gill, W. Murray, M. Wright, Practical Optimization (Academic Press, New York, 1981), pp. 59-154

  37. J.E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (SIAM, Philadelphia, 1996), pp. 86-167, 218-238

  38. J.A. Nelder, R. Mead, Comp. J. 7, 308 (1965)

    MATH  Google Scholar 

  39. C.L. Cleveland, U. Landman, M.N. Shafigullin, P.W. Stephens, R.L. Whetten, Z. Phys. D 40, 503 (1997)

    Article  Google Scholar 

  40. P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM, USA, 1991)

  41. P. Zhang, T.K. Sham, Phys. Rev. Lett. 90, 245502 (2003)

    Article  Google Scholar 

  42. P. Buffat, J.-P. Borel, Phys. Rev. A 13, 2287 (1976)

    Article  Google Scholar 

  43. Z. Kaszkur, J. Appl. Cryst. 33, 1262 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guagliardi.

Additional information

Received: 23 June 2004, Published online: 5 November 2004

PACS:

81.07.-b Nanoscale materials and structures: fabrication and characterization - 61.10.Nz X-ray diffraction - 61.72.Dd Experimental determination of defects by diffraction and scattering

A. Cervellino: On leave. Presently at: Paul Scherrer Institute, 5232 Villigen, Switzerland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cervellino, A., Giannini, C., Guagliardi, A. et al. Quantitative analysis of gold nanoparticles from synchrotron data by means of least-squares techniques. Eur. Phys. J. B 41, 485–493 (2004). https://doi.org/10.1140/epjb/e2004-00342-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00342-3

Keywords

Navigation