Skip to main content
Log in

A global study of \(\alpha \)-clusters decay in heavy and superheavy nuclei with half-life and preformation factor

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A detailed study of \(\alpha \)-clusters decay is exhibited by incorporating crucial microscopic nuclear structure information into the estimations of half-life and preformation factor. For the first time, using the k-cross validation approach, two semi-empirical formulas for (1) \(\alpha \)-decay half-life and (2) \(\alpha \)-particle preformation factor, are picked out and subsequently modified by including shell, odd-nucleon blocking, and asymmetry effects along with the usual dependence on \(\alpha \)-decay energy (\(Q_{\alpha }\)) and angular momentum of \(\alpha \)-particle. Both the formulas are fitted for the two different regions separated by neutron number N \(=\) 126, as from the experimental systematics the role of N \(=\) 126 shell closure is found decisive in determining the trends of \(Q_{\alpha }\), \(\alpha \)-decay half-life, and \(\alpha \)-particle preformation factor. It is found that the inclusion of the above-mentioned degrees of freedom significantly reduces the errors in the estimations when compared with several other similar modified/refitted semi-empirical relations indicating the robustness of the proposed formulas. The predictions of \(\alpha \)-decay half-life throughout the periodic chart have been made including the unknown territory, future probable decay chain of self-conjugate nucleus \(^{112}\)Ba terminated on \(^{100}\)Sn, decay chain of \(^{208}\)Pa through new isotope \(^{204}\)Ac as well as decay chains of awaiting superheavy nuclei \(^{298}\)Og and \(^{299}\)120. This article is expected to provide a systematic approach to selecting the formula by which reliable predictions can be made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data may be provided on the request to the corresponding author.]

References

  1. G. Gamow, Zur quantentheorie des atomkernes. Z. Phys. 51, 204–212 (1928). https://doi.org/10.1007/BF01343196

    Article  ADS  Google Scholar 

  2. R.W. Gurney, E.U. Condon, Wave mechanics and radioactive disintegration. Nature 122, 439 (1928). https://doi.org/10.1038/122439a0

    Article  ADS  Google Scholar 

  3. K. Auranen, D. Seweryniak, M. Albers, A. Ayangeakaa, S. Bottoni, M. Carpenter, C. Chiara, P. Copp, H. David, D. Doherty et al., Superallowed \(\alpha \) decay to doubly magic sn 100. Phys. Rev. Lett. 121(18), 182501 (2018). https://doi.org/10.1103/PhysRevLett.121.182501

    Article  ADS  Google Scholar 

  4. J. Tanaka, Z. Yang, S. Typel, S. Adachi, S. Bai, P. van Beek, D. Beaumel, Y. Fujikawa, J. Han, S. Heil, S. Huang, A. Inoue, Y. Jiang, M. Knösel, N. Kobayashi, Y. Kubota, W. Liu, J. Lou, Y. Maeda, Y. Matsuda, K. Miki, S. Nakamura, K. Ogata, V. Panin, H. Scheit, F. Schindler, P. Schrock, D. Symochko, A. Tamii, T. Uesaka, V. Wagner, K. Yoshida, J. Zenihiro, T. Aumann, Formation of clusters in dilute neutron-rich matter. Science 371(6526), 260–264 (2021). https://doi.org/10.1126/science.abe4688

    Article  ADS  Google Scholar 

  5. M. Huang, Z. Gan, Z. Zhang, L. Ma, J. Wang, M. Zhang, H. Yang, C. Yang, X. Huang, Z. Zhao et al., \(\alpha \) decay of the new isotope 204ac. Phys. Lett. B 834, 137484 (2022). https://doi.org/10.1016/j.physletb.2022.137484

    Article  Google Scholar 

  6. Y.T. Oganessian, F.S. Abdullin, P. Bailey, D. Benker, M. Bennett, S. Dmitriev, J.G. Ezold, J. Hamilton, R.A. Henderson, M. Itkis et al., Synthesis of a new element with atomic number z = 117. Phys. Rev. Lett. 104(14), 142502 (2010). https://doi.org/10.1103/PhysRevLett.104.142502

    Article  ADS  Google Scholar 

  7. Y.T. Oganessian, V. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A. Polyakov, R. Sagaidak, I. Shirokovsky, Y.S. Tsyganov, A. Voinov, G. Gulbekian et al., Synthesis of the isotopes of elements 118 and 116 in the cf 249 and cm 245+ ca 48 fusion reactions. Phys. Rev. C 74(4), 044602 (2006). https://doi.org/10.1103/PhysRevC.74.044602

    Article  ADS  Google Scholar 

  8. Y.T. Oganessian, F.S. Abdullin, P. Bailey, D. Benker, M. Bennett, S. Dmitriev, J.G. Ezold, J. Hamilton, R. Henderson, M. Itkis et al., Eleven new heaviest isotopes of elements z = 105 to z = 117 identified among the products of bk 249+ ca 48 reactions. Phys. Rev. C 83(5), 054315 (2011). https://doi.org/10.1103/PhysRevC.83.054315

    Article  ADS  Google Scholar 

  9. A. Voinov, V. Utyonkov, Y.T. Oganessian, F.S. Abdullin, A. Polyakov, Y.S. Tsyganov, I. Shirokovsky, R. Sagaidak, V. Subbotin, S. Dmitriev et al., Synthesizing and studying superheavy nuclei 294 ts and 294 og. Bull. Russ. Acad. Sci. Phys. 84, 351–355 (2020). https://doi.org/10.3103/S1062873820040358

    Article  Google Scholar 

  10. C.N. Davids, J.D. Larson, The argonne fragment mass analyzer. Nucl. Instrum. Methods Phys. Res. Sect. B 40, 1224–1228 (1989). https://doi.org/10.1016/0168-583X(89)90624-1

    Article  ADS  Google Scholar 

  11. S. Hofmann, G. Münzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72(3), 733 (2000). https://doi.org/10.1103/RevModPhys.72.733

    Article  ADS  Google Scholar 

  12. S. Hofmann, Synthesis of superheavy elements by cold fusion. Radiochim. Acta 99(7–8), 405–428 (2011). https://doi.org/10.1524/ract.2011.1854

    Article  Google Scholar 

  13. K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S.-i Goto, H. Haba, E. Ideguchi, K. Katori, H. Koura, H. Kikunaga, Observation of second decay chain from 278113. J. Phys. Soc. Jpn. 76(4), 045001–045001 (2007). https://doi.org/10.1143/jpsj.76.045001

    Article  ADS  Google Scholar 

  14. Y.T. Oganessian, V. Utyonkov, Superheavy nuclei from 48ca-induced reactions. Nucl. Phys. A 944, 62–98 (2015). https://doi.org/10.1016/j.nuclphysa.2015.07.003

    Article  ADS  Google Scholar 

  15. W. Nazarewicz, The limits of nuclear mass and charge. Nat. Phys. 14(6), 537–541 (2018). https://doi.org/10.1038/s41567-018-0163-3

    Article  Google Scholar 

  16. S.A. Giuliani, Z. Matheson, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sadhukhan, B. Schuetrumpf, N. Schunck, P. Schwerdtfeger, Colloquium: Superheavy elements: Oganesson and beyond. Rev. Mod. Phys. 91(1), 011001 (2019). https://doi.org/10.1103/RevModPhys.91.011001

    Article  ADS  Google Scholar 

  17. G. Giardina, G. Mandaglio, A. Nasirov, A. Anastasi, F. Curciarello, G. Fazio, Uncertainties and understanding of experimental and theoretical results regarding reactions forming heavy and superheavy nuclei. Nucl. Phys. A 970, 169–207 (2018). https://doi.org/10.1016/j.nuclphysa.2017.11.010

    Article  ADS  Google Scholar 

  18. A. Zdeb, M. Warda, K. Pomorski, Half-lives for \(\alpha \) and cluster radioactivity within a gamow-like model. Phys. Rev. C 87(2), 024308 (2013). https://doi.org/10.1103/PhysRevC.87.024308

    Article  ADS  Google Scholar 

  19. W. Yong-Jia, Z. Hong-Fei, Z. Wei, L. Jun-Qing, Improvement of a fission-like model for nuclear \(\alpha \) decay. Chin. Phys. Lett. 27(6), 062103 (2010). https://doi.org/10.1088/0256-307X/27/6/062103

    Article  ADS  Google Scholar 

  20. D. Poenaru, M. Ivascu, A. Sandulescu, Alpha decay as a fission-like process. J. Phys. G Nucl. Phys. 5(10), L169 (1979). https://doi.org/10.1088/0305-4616/5/10/005

    Article  ADS  Google Scholar 

  21. J. Cui, Y. Zhang, S. Zhang, Y. Wang et al., \(\alpha \)-decay half-lives of superheavy nuclei. Phys. Rev. C 97(1), 014316 (2018). https://doi.org/10.1103/PhysRevC.97.014316

    Article  ADS  Google Scholar 

  22. X. Bao, H. Zhang, H. Zhang, G. Royer, J. Li, Systematical calculation of \(\alpha \) decay half-lives with a generalized liquid drop model. Nucl. Phys. A 921, 85–95 (2014). https://doi.org/10.1016/j.nuclphysa.2013.11.002

    Article  ADS  Google Scholar 

  23. G. Royer, H. Zhang, Recent \(\alpha \) decay half-lives and analytic expression predictions including superheavy nuclei. Phys. Rev. C 77(3), 037602 (2008). https://doi.org/10.1103/PhysRevC.77.037602

    Article  ADS  Google Scholar 

  24. V. Zanganah, D.T. Akrawy, H. Hassanabadi, S. Hosseini, S. Thakur, Calculation of \(\alpha \)-decay and cluster half-lives for 197–226fr using temperature-dependent proximity potential model. Nucl. Phys. A 997, 121714 (2020). https://doi.org/10.1016/j.nuclphysa.2020.121714

    Article  Google Scholar 

  25. K. Santhosh, S. Sahadevan, B. Priyanka, M. Unnikrishnan, Systematic study of heavy cluster emission from 210–226ra isotopes. Nucl. Phys. A 882, 49–61 (2012). https://doi.org/10.1016/j.nuclphysa.2012.04.001

    Article  ADS  Google Scholar 

  26. H.J. Mang, Calculation of \(\alpha \)-transition probabilities. Phys. Rev. 119, 1069–1075 (1960). https://doi.org/10.1103/PhysRev.119.1069

    Article  ADS  Google Scholar 

  27. A. Săndulescu, O. Dumitrescu, Deuteron and triton reduced widths of the shell model. Phys. Lett. 11(3), 240–242 (1964). https://doi.org/10.1016/0031-9163(64)90427-5

    Article  ADS  Google Scholar 

  28. V.G. Soloviev, Effect of pairing correlations on the alpha decay rates. Phys. Lett. (1962). https://doi.org/10.1016/0031-9163(62)90354-2

    Article  Google Scholar 

  29. H.J. Mang, Alpha decay. Annu. Rev. Nucl. Sci. 14(1), 1–26 (1964). https://doi.org/10.1146/annurev.ns.14.120164.000245

    Article  ADS  Google Scholar 

  30. D.S. Delion, A. Insolia, R.J. Liotta, Alpha widths in deformed nuclei: microscopic approach. Phys. Rev. C 46, 1346–1354 (1992). https://doi.org/10.1103/PhysRevC.46.1346

    Article  ADS  Google Scholar 

  31. D.S. Delion, A. Insolia, R.J. Liotta, Microscopic description of the anisotropy in alpha decay. Phys. Rev. C 49, 3024–3028 (1994). https://doi.org/10.1103/PhysRevC.49.3024

    Article  ADS  Google Scholar 

  32. D.S. Delion, J. Suhonen, Microscopic description of \({\alpha }\)-like resonances. Phys. Rev. C 61, 024304 (2000). https://doi.org/10.1103/PhysRevC.61.024304

    Article  ADS  Google Scholar 

  33. T. Fliessbach, H.J. Mang, J.O. Rasmussen, Normalized shell model alpha decay theory applied to unfavored decay. Phys. Rev. C 13, 1318–1323 (1976). https://doi.org/10.1103/PhysRevC.13.1318

    Article  ADS  Google Scholar 

  34. I. Tonozuka, A. Arima, Surface-clustering and -decays of 212po. Nucl. Phys. A 323(1), 45–60 (1979). https://doi.org/10.1016/0375-9474(79)90415-9

    Article  ADS  Google Scholar 

  35. S.M. Lenzi, O. Dragún, E.E. Maqueda, R.J. Liotta, T. Vertse, Description of alpha clustering including continuum configurations. Phys. Rev. C 48, 1463–1465 (1993). https://doi.org/10.1103/PhysRevC.48.1463

    Article  ADS  Google Scholar 

  36. R.I. Betan, W. Nazarewicz, \(\alpha \) decay in the complex-energy shell model. Phys. Rev. C 86, 034338 (2012). https://doi.org/10.1103/PhysRevC.86.034338

    Article  ADS  Google Scholar 

  37. A. Dumitrescu, D.S. Delion, Cluster mean-field description of \(\alpha \) emission. Phys. Rev. C 107, 024302 (2023). https://doi.org/10.1103/PhysRevC.107.024302

    Article  ADS  Google Scholar 

  38. V. Viola Jr., G. Seaborg, Nuclear systematics of the heavy elements-ii lifetimes for alpha, beta and spontaneous fission decay. J. Inorg. Nucl. Chem. 28(3), 741–761 (1966). https://doi.org/10.1016/0022-1902(66)80412-8

    Article  Google Scholar 

  39. A. Sobiczewski, Z. Patyk, S. Ćwiok, Deformed superheavy nuclei. Phys. Lett. B 224(1–2), 1–4 (1989). https://doi.org/10.1016/0370-2693(89)91038-1

    Article  ADS  Google Scholar 

  40. A. Parkhomenko, A. Sobiczewski, Phenomenological formula for alpha-decay half-lives of heaviest nuclei. Acta Phys. Pol. B 36(10), 3095 (2005)

    ADS  Google Scholar 

  41. B.A. Brown, Simple relation for alpha decay half-lives. Phys. Rev. C 46(2), 811 (1992). https://doi.org/10.1103/PhysRevC.46.811

    Article  ADS  MathSciNet  Google Scholar 

  42. Z. Ren, C. Xu, Z. Wang, New perspective on complex cluster radioactivity of heavy nuclei. Phys. Rev. C 70(3), 034304 (2004). https://doi.org/10.1103/PhysRevC.70.034304

    Article  ADS  Google Scholar 

  43. C. Qi, F. Xu, R.J. Liotta, R. Wyss, Universal decay law in charged-particle emission and exotic cluster radioactivity. Phys. Rev. Lett. 103(7), 072501 (2009). https://doi.org/10.1103/PhysRevLett.103.072501

    Article  ADS  Google Scholar 

  44. G. Royer, Alpha emission and spontaneous fission through quasi-molecular shapes. J. Phys. G Nucl. Part. Phys. 26(8), 1149 (2000). https://doi.org/10.1088/0954-3899/26/8/305

    Article  ADS  Google Scholar 

  45. G. Saxena, A. Jain, P. Sharma, A new empirical formula for \(\alpha \)-decay half-life and decay chains of z = 120 isotopes. Phys. Scr. 96(12), 125304 (2021). https://doi.org/10.1088/1402-4896/ac1a4d

    Article  ADS  Google Scholar 

  46. A. Pakou, O. Sgouros, V. Soukeras, J. Casal, K. Rusek, Reaction mechanisms of the weakly bound nuclei 6, 7 li and 7, 9 be on light targets at near barrier energies. Eur. Phys. J. A 58(1), 8 (2022). https://doi.org/10.1140/epja/s10050-021-00655-w

    Article  ADS  Google Scholar 

  47. D.T. Akrawy, D. Poenaru, Alpha decay calculations with a new formula. J. Phys. G Nucl. Part. Phys. 44(10), 105105 (2017). https://doi.org/10.1088/1361-6471/aa8527

    Article  ADS  Google Scholar 

  48. D.T. Akrawy, H. Hassanabadi, S. Hosseini, K. Santhosh, Systematic study of alpha decay half-lives using new universal decay law. Int. J. Mod. Phys. E 28(09), 1950075 (2019). https://doi.org/10.1142/S0218301319500757

    Article  ADS  Google Scholar 

  49. U. Singh, P. Sharma, M. Kaushik, S. Jain, D.T. Akrawy, G. Saxena, Study of decay modes in transfermium isotopes. Nucl. Phys. A 1004, 122035 (2020). https://doi.org/10.1016/j.nuclphysa.2020.122035

    Article  Google Scholar 

  50. G. Saxena, P. Sharma, P. Saxena, Modified empirical formulas and machine learning for \(\alpha \)-decay systematics. J. Phys. G Nucl. Part. Phys. 48(5), 055103 (2021). https://doi.org/10.1088/1361-6471/abcd1c

    Article  ADS  Google Scholar 

  51. D.T. Akrawy, A. Budaca, G. Saxena, A.H. Ahmed, Generalization of the screened universal \(\alpha \)-decay law by asymmetry and angular momentum. Eur. Phys. J. A 58(8), 145 (2022). https://doi.org/10.1140/epja/s10050-022-00789-5

    Article  ADS  Google Scholar 

  52. P. Sharma, A. Jain, G. Saxena, New modified empirical formulae for favoured and unfavoured \(\alpha \)-decay. Nucl. Phys. A 1016, 122318 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122318

    Article  Google Scholar 

  53. J.G. Beckerley, What is the “geiger-nuttall law’’? Am. J. Phys. 13, 158 (1945). https://doi.org/10.1119/1.1990692

    Article  ADS  Google Scholar 

  54. D. Delion, A. Insolia, R. Liotta, New single particle basis for microscopic description of decay processes. Phys. Rev. C 54(1), 292 (1996). https://doi.org/10.1103/PhysRevC.54.292

    Article  ADS  Google Scholar 

  55. R.G. Lovas, R. Liotta, A. Insolia, K. Varga, D. Delion, Microscopic theory of cluster radioactivity. Phys. Rep. 294(5), 265–362 (1998). https://doi.org/10.1016/S0370-1573(97)00049-5

    Article  ADS  Google Scholar 

  56. H. Zhang, G. Royer, \(\alpha \) particle preformation in heavy nuclei and penetration probability. Phys. Rev. C 77(5), 054318 (2008). https://doi.org/10.1103/PhysRevC.77.054318

    Article  ADS  Google Scholar 

  57. H. Zhang, G. Royer, Y. Wang, J. Dong, W. Zuo, J. Li, Analytic expressions for \(\alpha \) particle preformation in heavy nuclei. Phys. Rev. C 80(5), 057301 (2009). https://doi.org/10.1103/PhysRevC.80.057301

    Article  ADS  Google Scholar 

  58. J.-G. Deng, J.-C. Zhao, D. Xiang, X.-H. Li, Systematic study of unfavored \(\alpha \)-decay half-lives of closed-shell nuclei related to ground and isomeric states. Phys. Rev. C 96(2), 024318 (2017). https://doi.org/10.1103/PhysRevC.96.024318

    Article  ADS  Google Scholar 

  59. J.-G. Deng, J.-C. Zhao, P.-C. Chu, X.-H. Li, Systematic study of \(\alpha \) decay of nuclei around the z = 82, n = 126 shell closures within the cluster-formation model and proximity potential 1977 formalism. Phys. Rev. C 97(4), 044322 (2018). https://doi.org/10.1103/PhysRevC.97.044322

    Article  ADS  Google Scholar 

  60. H.-M. Liu, Y.-T. Zou, X. Pan, X.-J. Bao, X.-H. Li, Systematic study of the \(\alpha \) decay preformation factors of the nuclei around the z = 82, n = 126 shell closures within the generalized liquid drop model. Chin. Phys. C 44(9), 094106 (2020). https://doi.org/10.1088/1674-1137/44/9/094106

    Article  ADS  Google Scholar 

  61. Z. Wang, Z. Ren, D. Bai, Theoretical studies on \(\alpha \)-decay half-lives of n = 125, 126, and 127 isotones. Phys. Rev. C 101(5), 054310 (2020). https://doi.org/10.1103/PhysRevC.101.054310

    Article  ADS  Google Scholar 

  62. J.-G. Deng, H.-F. Zhang, X.-D. Sun, New behaviors of \(\alpha \)-particle preformation factors near doubly magic 100sn. Chin. Phys. C 46(6), 061001 (2022). https://doi.org/10.1088/1674-1137/ac5a9f

    Article  ADS  Google Scholar 

  63. D. Delion, Universal decay rule for reduced widths. Phys. Rev. C 80(2), 024310 (2009). https://doi.org/10.1103/PhysRevC.80.024310

    Article  ADS  Google Scholar 

  64. D. Ni, Z. Ren, Half-lives and cluster preformation factors for various cluster emissions in trans-lead nuclei. Phys. Rev. C 82(2), 024311 (2010). https://doi.org/10.1103/PhysRevC.82.024311

    Article  ADS  Google Scholar 

  65. J.-G. Deng, H.-F. Zhang et al., Analytic formula for estimating the \(\alpha \)-particle preformation factor. Phys. Rev. C 102(4), 044314 (2020). https://doi.org/10.1103/PhysRevC.102.044314

    Article  ADS  MathSciNet  Google Scholar 

  66. K. Santhosh, T.A. Jose, Theoretical investigation on double-\(\alpha \) decay from radioactive nuclei. Phys. Rev. C 104(6), 064604 (2021). https://doi.org/10.1103/PhysRevC.104.064604

    Article  ADS  Google Scholar 

  67. J.-G. Deng, H.-F. Zhang, Correlation between \(\alpha \)-particle preformation factor and \(\alpha \) decay energy. Phys. Lett. B 816, 136247 (2021). https://doi.org/10.1016/j.physletb.2021.136247

    Article  Google Scholar 

  68. H. Geiger, J. Nuttall et al., Lvii the ranges of the \(\alpha \) particles from various radioactive substances and a relation between range and period of transformation. Lond. Edinb. Dublin Philos. Mag. J. Sci. 22(130), 613–621 (1911). https://doi.org/10.1080/14786441008637156

    Article  Google Scholar 

  69. F. Kondev, M. Wang, W. Huang, S. Naimi, G. Audi, The nubase2020 evaluation of nuclear physics properties. Chin. Phys. C 45(3), 030001 (2021). https://doi.org/10.1088/1674-1137/abddae

    Article  ADS  Google Scholar 

  70. M. Carnini, A. Pastore, Trees and forests in nuclear physics. J. Phys. G Nucl. Part. Phys. 47(8), 082001 (2020). https://doi.org/10.1088/1361-6471/ab92e3

    Article  ADS  Google Scholar 

  71. C.-Q. Li, C.-N. Tong, H.-J. Du, L.-G. Pang, Deep learning approach to nuclear masses and \(\alpha \)-decay half-lives. Phys. Rev. C 105(6), 064306 (2022). https://doi.org/10.1103/PhysRevC.105.064306

    Article  ADS  Google Scholar 

  72. A. Soylu, C. Qi, Extended universal decay law formula for the \(\alpha \) and cluster decays. Nucl. Phys. A 1013, 122221 (2021). https://doi.org/10.1016/j.nuclphysa.2021.122221

    Article  Google Scholar 

  73. J.-G. Deng, H.-F. Zhang, G. Royer et al., Improved empirical formula for \(\alpha \)-decay half-lives. Phys. Rev. C 101(3), 034307 (2020). https://doi.org/10.1103/PhysRevC.101.034307

    Article  ADS  Google Scholar 

  74. D.T. Akrawy, H. Hassanabadi, Y. Qian, K. Santhosh, Influence of nuclear isospin and angular momentum on \(\alpha \)-decay half-lives. Nucl. Phys. A 983, 310–320 (2019). https://doi.org/10.1016/j.nuclphysa.2018.10.091

    Article  ADS  Google Scholar 

  75. D.T. Akrawy, H. Hassanabadi, S. Hosseini, K. Santhosh, Systematic study of \(\alpha \)-decay half-lives using royer and related formula. Nucl. Phys. A 971, 130–137 (2018). https://doi.org/10.1016/j.nuclphysa.2018.01.018

    Article  ADS  Google Scholar 

  76. D.T. Akrawy, H. Hassanabadi, S. Hosseini, K. Santhosh, Nuclear isospin effect on \(\alpha \)-decay half-lives. Nucl. Phys. A 975, 19–28 (2018). https://doi.org/10.1016/j.nuclphysa.2018.04.001

    Article  ADS  Google Scholar 

  77. D.T. Akrawy, A.H. Ahmed, New empirical formula for \(\alpha \)-decay calculations. Int. J. Mod. Phys. E 27(08), 1850068 (2018). https://doi.org/10.1103/PhysRevC.101.034307

  78. D.T. Akrawy, A.H. Ahmed, \(\alpha \)-decay systematics for superheavy nuclei. Phys. Rev. C 100(4), 044618 (2019). https://doi.org/10.1103/PhysRevC.100.044618

    Article  ADS  Google Scholar 

  79. M. Ismail, A. Ellithi, A. Adel, M. Abbas, Improved empirical formulas for \(\alpha \)-decay half-lives of heavy and superheavy nuclei. Phys. Scr. 97(7), 075303 (2022). https://doi.org/10.1088/1402-4896/ac758c

    Article  ADS  Google Scholar 

  80. J.D. Rodriguez, A. Perez, J.A. Lozano, Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 569–575 (2010). https://doi.org/10.1109/TPAMI.2009.187

    Article  Google Scholar 

  81. A. Bohr, B. M. N. Structure, Vol. 2: Nuclear deformations wa benjamin, New York, Amsterdam (1975)

  82. V.Y. Denisov, A. Khudenko, \(\alpha \)-decay half-lives, \(\alpha \)-capture, and \(\alpha \)-nucleus potential. At. Data Nucl. Data Tables 95(6), 815–835 (2009). https://doi.org/10.1016/j.adt.2009.06.003

    Article  ADS  Google Scholar 

  83. D.S. Delion, A. Dumitrescu, Realistic analytical approach for \(\alpha \) decay and clustering. Phys. Rev. C 102, 014327 (2020). https://doi.org/10.1103/PhysRevC.102.014327

    Article  ADS  Google Scholar 

  84. G. Saxena, A. Jain, Cluster radioactivity from trans-tin to superheavy region using an improved empirical formula. Eur. Phys. J. A 59(8), 189 (2023). https://doi.org/10.1140/epja/s10050-023-01102-8

    Article  ADS  Google Scholar 

  85. P. Schuck, S. Ethofer, Self-consistent (nuclear) phonons. Nucl. Phys. A 212(2), 269–286 (1973). https://doi.org/10.1016/0375-9474(73)90563-0

    Article  ADS  Google Scholar 

  86. Y.K. Gambhir, P. Ring, P. Schuck, Nuclei: a superfluid condensate of \(\alpha \) particles? A study within the interacting-boson model. Phys. Rev. Lett. 51, 1235–1238 (1983). https://doi.org/10.1103/PhysRevLett.51.1235

    Article  ADS  Google Scholar 

  87. W. Seif, M. Botros, A. Refaie, Preformation probability inside \(\alpha \) emitters having different ground state spin-parity than their daughters. Phys. Rev. C 92(4), 044302 (2015). https://doi.org/10.1103/PhysRevC.92.044302

    Article  ADS  Google Scholar 

  88. S. Guo, X. Bao, Y. Gao, J. Li, H. Zhang, The nuclear deformation and the preformation factor in the \(\alpha \)-decay of heavy and superheavy nuclei. Nucl. Phys. A 934, 110–120 (2015). https://doi.org/10.1016/j.nuclphysa.2014.12.001

    Article  ADS  Google Scholar 

  89. A.M. Lane, R.G. Thomas, R-matrix theory of nuclear reactions. Rev. Mod. Phys. 30, 257–353 (1958). https://doi.org/10.1103/RevModPhys.30.257

    Article  ADS  MathSciNet  Google Scholar 

  90. K.P. Santhosh, C. Nithya, Systematic studies of \({\alpha }\) and heavy-cluster emissions from superheavy nuclei. Phys. Rev. C 97, 064616 (2018). https://doi.org/10.1103/PhysRevC.97.064616

    Article  ADS  Google Scholar 

  91. H.F. Zhang, G. Royer, \({\alpha }\) particle preformation in heavy nuclei and penetration probability. Phys. Rev. C 77, 054318 (2008). https://doi.org/10.1103/PhysRevC.77.054318

    Article  ADS  Google Scholar 

  92. W.A. Yahya, T.T. Ibrahim, Cluster decay half-lives using relativistic density dependent double folding model. Eur. Phys. J. A 58(3), 48 (2022). https://doi.org/10.1140/epja/s10050-022-00701-1

    Article  ADS  Google Scholar 

  93. T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

  94. G.K. Rajbahadur, S. Wang, G.A. Oliva, Y. Kamei, A.E. Hassan, The impact of feature importance methods on the interpretation of defect classifiers. IEEE Trans. Softw. Eng. 48(7), 2245–2261 (2021). https://doi.org/10.1109/TSE.2021.3056941

    Article  Google Scholar 

  95. https://t2.lanl.gov/nis/data/astro/molnix96/spidat.html

  96. N. Wang, M. Liu, X. Wu, J. Meng, Surface diffuseness correction in global mass formula. Phys. Lett. B 734, 215–219 (2014). https://doi.org/10.1016/j.physletb.2014.05.049

  97. S. Hofmann, S. Heinz, R. Mann, J. Maurer, G. Münzenberg, S. Antalic, W. Barth, H. Burkhard, L. Dahl, K. Eberhardt et al., Review of even element super-heavy nuclei and search for element 120. Eur. Phys. J. A 52, 180 (2016). https://doi.org/10.1140/epja/i2016-16180-4

  98. C. Cornelio, S. Dash, V. Austel, T.R. Josephson, J. Goncalves, K.L. Clarkson, N. Megiddo, B. El Khadir, L. Horesh, Combining data and theory for derivable scientific discovery with ai-descartes. Nat. Commun. 14(1), 1777 (2023)

Download references

Acknowledgements

GS acknowledges the support provided by SERB (DST), Govt. of India under SIR/2022/000566, and would like to thank Prof. Nils Paar for his kind hospitality at the University of Zagreb, Croatia. Authors are indebted to Riya Sailani, UOR, Jaipur, India for the discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Saxena.

Ethics declarations

Code availability statement

Code/software will be made available on reasonable request.

Additional information

Communicated by Chong Qi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (dat 19 KB)

Supplementary file 2 (dat 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, G., Sharma, P.K. & Saxena, P. A global study of \(\alpha \)-clusters decay in heavy and superheavy nuclei with half-life and preformation factor. Eur. Phys. J. A 60, 50 (2024). https://doi.org/10.1140/epja/s10050-024-01259-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01259-w

Navigation