Skip to main content
Log in

The unintegrated gluon distribution from the GBW and BGK models

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The gluon distribution is obtained from the Golec-Biernat–W\(\ddot{\textrm{u}}\)sthoff (GBW) and Bartels, Golec-Biernat, and Kowalski (BGK) models at low x. We derive analytical results for the unintegrated color dipole gluon distribution function at small transverse momentum, which provides useful information to constrain the \(k_{t}\)-shape of the unintegrated gluon distribution in comparison with the unintegrated gluon distribution (UGD) models. The longitudinal proton structure function \(F_{L}(x,Q^2)\) from the \(k_{t}\) factorization scheme, using the unintegrated gluon density, is computed. We compare the predictions for the on-shell and twist-2 corrections with the HERA data and the CJ15 parameterization method for \(F_{L}\). We show that this method describes very well the experimental data within the on-shell and twist-2 framework. Effects of parameters on \(F_{L}\), where charm contribution is taken into account, are investigated. These results are in good agreement with the data at fixed W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

Notes

  1. Although both densities are differential in the transverse momentum of the extracted gluon, the proper low-x UGD genuinely comes from the Balitsky–Fadin–Kuraev–Lipatov (BFKL) formalism, and it contains a mixture of unpolarized and linearly polarized gluons, while the proton is unpolarized. Conversely, while gluon TMDs usually refer to densities defined in the standard TMD factorization formalism, they evolve according to the Collins–Soper–Sterman equation and account for different combinations of gluon and proton spin states.

  2. In the twist expansion, the large logarithms \(\ln (1/x)\) at low x are important as

    $$\begin{aligned} F_{2}(x,Q^2)=F^{(0)}_{2}(x,\ln {Q^2})+F^{(1)}_{2}(x,\ln {Q^2})\frac{M^2}{Q^2}..., \end{aligned}$$

    where the \(k_{t}\)-factorization theorem is necessary to allow these large logarithms to be independent from the twist expansion [6,7,8].

  3. Saturation is visible in the fact that the dipole scattering amplitude approaches the unitarity bound for the dipole sizes larger than a characteristic size \(1/Q_{s}(x)\) which decreases when decreasing x [18].

  4. This is the formal photoproduction limit.

  5. The GBW model has features of a solution to the nonlinear evolution of the Balitsky–Kovchegov (BK) type.

  6. The behavior of the dipole cross sections in the GBW and BGK models, at small and large dipoles, is considered in Ref. [49].

  7. Equation (22) is modified with the Sudakov form factor as x increase by the following form:

    $$f(x,k_{t}^{2})=\frac{\partial {[xg(x,\mu ^{2})S(r,\mu ^2)]}}{\partial {\ln }\mu ^{2}}\Big \vert _{\mu ^{2}=k^{2}_{t}}.$$

    The Sudakov form factor in Ref. [49] is defined by \(S(r,\mu ^2)=\frac{\alpha _{s}N_{c}}{4\pi }\ln ^{2}\left( \frac{\mu ^2r^2}{4\text {e}^{-2\gamma _{E}}}\right) \), where \(\gamma _{E}\) is the Euler–Mascheroni constant.

  8. In APIPSW model: \(f(x,k_{t}^{2})|_{k_{t}{\rightarrow }\infty } \simeq \frac{A}{4\pi ^2M^{2}}\)

    In IN model:         \(f(x,k_{t}^{2})|_{k_{t}{\rightarrow }\infty }\simeq F_\textrm{hard}.\)

  9. The longitudinal structure function in Ref. [61] is defined as a convolution

    $$\begin{aligned} F_{L}(x,Q^2)=\int \limits _{x}^{1}\frac{\text {d}z}{z}\int \text {d}\textbf{k}^{2}_{T}\sum {e_{f}^{2}}\widehat{C}^{g}_{L}(x/z,Q^2,m_{f}^{2},\textbf{k}^{2}_{T}) f_{g}(z,\textbf{k}^{2}_{T},\mu ^2), \end{aligned}$$

    where the initial TMD gluon distribution is defined in Ref. [64] by the following form

    $$ f_{g}(x,\textbf{k}^{2}_{T})=c_{g}(1-x)^{b_{g}}\sum _{n=1}^{3}(c_{n}R_{0}(x)|\textbf{k}_{T}|)^{n}e^{-R_{0}(x)|\textbf{k}_{T}|} $$

    , and the hard coefficient function \(\widehat{C}_{L}^{g}\) corresponds to the quark-box diagram for off-shell (dependent on the incoming gluon virtuality) photon–gluon fusion subprocess in Ref. [65]

  10. The three parameters are \(\sigma _{0}\), \(\lambda \), and \(x_{0}\).

References

  1. K. Golec-Biernat and M. W\(\ddot{\rm u}\)sthoff, Phys. Rev. D 59, 014017 (1998)

  2. K. Golec-Biernat, Acta. Phys. Pol. B 33, 2771 (2002)

    ADS  Google Scholar 

  3. K. Golec-Biernat, Acta. Phys. Pol. B 35, 3103 (2004)

    ADS  Google Scholar 

  4. K. Golec-Biernat, J. Phys. G 28, 1057 (2002)

    ADS  Google Scholar 

  5. J.R. Forshaw, G. Shaw, JHEP 12, 052 (2004)

    ADS  Google Scholar 

  6. M. Hentschinski, Phys. Rev. D 104, 054014 (2021)

    ADS  Google Scholar 

  7. R. Boussarie et al., TMD Handbook, arXiv [hep-ph]: arXiv: 2304.03302

  8. A.V. Lipatov, G.I. Lykasov, M.A. Malyshev, Phys. Lett. B 839, 137780 (2023)

    Google Scholar 

  9. Yu.L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  10. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    ADS  Google Scholar 

  11. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  12. V.S. Fadin, E.A. Kuraev, L.N. Lipatov, Phys. Lett. B 60, 50 (1975)

    ADS  Google Scholar 

  13. L.N. Lipatov, Sov. J. Nucl. Phys. 23, 338 (1976)

    Google Scholar 

  14. I.I. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 822 (1978)

    Google Scholar 

  15. I. Balitsky, Nucl. Phys. B 463, 99 (1996)

    ADS  Google Scholar 

  16. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999)

    ADS  Google Scholar 

  17. J. Jalilian-Marian, A. Kovner, A. Leonidov, H. Weigert, Nucl. Phys. B 504, 415 (1997)

    ADS  Google Scholar 

  18. E. Iancu, K. Itakura, S. Munier, Phys. Lett. B 590, 199 (2004)

    ADS  Google Scholar 

  19. J. Bartels, K. Golec-Biernat, H. Kowalski, Phys. Rev. D 66, 014001 (2002)

    ADS  Google Scholar 

  20. B. Sambasivam, T. Toll, T. Ullrich, Phys. Lett. B 803, 135277 (2020)

    Google Scholar 

  21. J.R. Forshaw, G. Shaw, JHEP 12, 052 (2004)

    ADS  Google Scholar 

  22. E. Iancu, A. Leonidov, L. McLerran, Nucl. Phys. A 692, 583 (2001)

    ADS  Google Scholar 

  23. E. Iancu, A. Leonidov, L. McLerran, Phys. Lett. B 510, 133 (2001)

    ADS  Google Scholar 

  24. An Assessment of U.S. Based Electron-Ion Collider Science (The National Academies Press, Washington, DC, 2018)

  25. . R. Abdul Khalek et al., Snowmass 2021 White Paper, arXiv [hep-ph]: arXiv: 2203.13199

  26. V.D. Burkert et al., Prog. Part. Nucl. Phys. 131, 104032 (2023)

    Google Scholar 

  27. S. Amoroso et al., Snowmass 2021 whitepaper. Acta Phys. Pol. B 53, 12-A1 (2022)

    Google Scholar 

  28. M. Hentschinski et al., White paper on forward physics, BFKL, saturation physics and diffraction. Acta Phys. Pol. B 54, 3-A2 (2023)

    ADS  Google Scholar 

  29. R. Abir et al., The case for an EIC theory alliance: theoretical challenges of the EIC, arXiv[hep-ph]: arXiv:2305.14572

  30. P.. Agostini et al., [LHeC Collaboration and FCC-he Study Group ]. J. Phys. G: Nucl. Part. Phys. 48, 110501 (2021)

  31. R.S. Thorne, Phys. Rev. D 71, 054024 (2005)

    ADS  Google Scholar 

  32. K. Golec-Biernat, S. Sapeta, JHEP 03, 102 (2018)

    ADS  Google Scholar 

  33. A. Luszczak, H. Kowalski, Phys. Rev. D 89, 074051 (2014)

    ADS  Google Scholar 

  34. A. Luszczak, M. Luszczak, W. Schafer, Phys. Lett. B 835, 137582 (2022)

    Google Scholar 

  35. I.P. Ivanov, N.N. Nikolaev, Phys. Rev. D 65, 054004 (2002)

    ADS  Google Scholar 

  36. I.V. Anikin, A. Besse, D.Y. Ivanov, B. Pire, L. Szymanowski, S. Wallon, Phys. Rev. D 84, 054004 (2011)

    ADS  Google Scholar 

  37. M. Hentschinski, A. Sabio Vera, C. Salas, Phys. Rev. Lett. 110, 041601 (2013)

  38. G. Watt, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 31, 73 (2003)

    ADS  Google Scholar 

  39. A.D. Bolognino, F.G. Celiberto, D.Y. Ivanov, A. Papa, arXiv [hep-ph]: arXiv: 1808.02958

  40. A.D. Bolognino, F.G. Celiberto, arXiv [hep-ph]: arXiv: 1902.04520

  41. A.D. Bolognino, F.G. Celiberto, arXiv [hep-ph]: arXiv: 1808.02395

  42. F.G. Celiberto, Nuovo Cim. C 42, 220 (2019)

    Google Scholar 

  43. F.G. Celiberto, D. Gordo Gomez, A. Sabio Vera, Phys. Lett. B 786, 201 (2018)

  44. A.D. Bolognino, A. Szczurek, W. Sch\(\ddot{a}\)fer, Phys. Rev. D 101, 054041 (2020)

  45. A.D. Bolognino, F.G. Celiberto, D.Y. Ivanov, A. Papa, W. Sch\(\ddot{a}\)fer, A. Szczurek, Eur. Phys. J. C 81, 846 (2021)

  46. G.R. Boroun, Eur. Phys. J. C 83, 42 (2023)

    ADS  Google Scholar 

  47. G.R. Boroun, Eur. Phys. J. C 82, 740 (2022)

    ADS  Google Scholar 

  48. G.R. Boroun, Phys. Rev. D 108, 034025 (2023)

    ADS  Google Scholar 

  49. T. Goda, K. Kutak, S. Sapeta, Eur. Phys. J. C 83, 957 (2023)

    ADS  Google Scholar 

  50. H. Jung, A.V. Kotikov, A.V. Lipatov, N.P. Zotov, Proc. of 15th Int. Workshop on Deep-Inelastic Scattering and Related Subjects, Munich, April 2007. arXiv[hep-ph]: arXiv: 0706.3793v2

  51. K. Golec-Biernat, A.M. Stasto, Phys. Rev. D 80, 014006 (2009)

    ADS  Google Scholar 

  52. J. Bartels, K.J. Golec-Biernat, K. Peters, Eur. Phys. J. C 17, 121 (2000)

    ADS  Google Scholar 

  53. N.N. Nikolaev, B.G. Zakharov, Phys. Lett. B 327, 149 (1994)

    ADS  Google Scholar 

  54. N.N. Nikolaev, B.G. Zakharov, Phys. Lett. B 332, 184 (1994)

    ADS  Google Scholar 

  55. V. Andreev, A. Baghdasaryan, S. Baghdasaryan, et al. (H1 Collab.), Eur. Phys. J. C 74, 2814 (2014)

  56. F.D. Aaron, C. Alexa, V. Andreev, et al. (H1 Collab.), Eur. Phys. J. C 71, 1579 (2011)

  57. A. Accardi, L.T. Brady, W. Melnitchouk, J.F. Owens, N. Sato, Phys. Rev. D 93, 114017 (2016)

    ADS  Google Scholar 

  58. L.P. Kaptari, A.V. Kotikov, N.Y. Chernikova, P. Zhang, Phys. Rev. D 99, 096019 (2019)

    ADS  Google Scholar 

  59. S. Zarrin, S. Dadfar, Int. J. Theor. Phys. 60, 3822 (2021)

    Google Scholar 

  60. G.R. Boroun, Phys. Rev. D 105, 034002 (2022)

    ADS  MathSciNet  Google Scholar 

  61. A.V. Lipatov, G.I. Lykasov, M.A. Malyshev, Phys. Lett. B 839, 137780 (2023)

    Google Scholar 

  62. R. Saikia, P. Phukan, J.K. Sarma, arXiv:2304.00272v2 [hep-ph]

  63. Z.B. Baghsiyahi, M. Modarres, R.K. Valeshabadi, Eur. Phys. J. C 82, 392 (2022)

    ADS  Google Scholar 

  64. A.V. Lipatov, G.I. Lykasov, M.A. Malyshev, Phys. Rev. D 107, 014022 (2023)

    ADS  Google Scholar 

  65. A.V. Kotikov, A.V. Lipatov, G. Parente, N.P. Zotov, Eur. Phys. J. C 26, 51 (2002)

    ADS  Google Scholar 

  66. A. Bacchetta, F.G. Celiberto, M. Radici, P. Taels, Eur. Phys. J. C 80, 733 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Razi University for the financial support of this project and thanks A.V. Lipatov for allowing access to data related to the longitudinal structure function with the TMD gluon density.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Boroun.

Additional information

Communicated by Rishi Sharma.

Appendix

Appendix

  •  \(\mathbf {\textrm{ABIPSW}~ \textrm{model}:}\)

    This is a x-independent model of the UGD which has been proposed by the authors in Ref. [36] as

    $$\begin{aligned} f(x,k_{t}^{2})=\frac{A}{4\pi ^{2}M^{2}}\Big {[}\frac{k_{t}^{2}}{M^{2}+k_{t}^{2}}\Big {]}, \end{aligned}$$
    (28)

    which merely coincides with the proton impact factor. Here, M is a characteristic soft scale, and A is the normalization factor.

  •  \(\mathbf {\textrm{IN}~ \textrm{model}:}\)

    In the large- and small-\(k_{t}\) regions, a UGD soft–hard model (where the soft and the hard components are defined in [35]) has been proposed by the authors in Ref. [35] as

    $$\begin{aligned} f(x,k_{t}^{2})= & {} f_{\textrm{soft}}^{(B)}(x,k_{t}^{2})\frac{k_{s}^{2}}{k_{s}^{2}+k_{t}^{2}}\nonumber \\{} & {} +f_{\mathrm {\textrm{hard}}}(x,k_{t}^{2})\frac{k_{t}^{2}}{k_{h}^{2}+k_{t}^{2}}. \end{aligned}$$
    (29)
  •  \(\mathbf {\textrm{HSS}~ \textrm{model}:}\)

    This model [37] is used in the study of DIS structure functions and takes the form of a convolution between the BFKL gluon Green\(^{,}\)s function and a leading-order (LO) proton impact factor, which has been employed in the description of single-bottom quark production at LHC and to investigate the photoproduction of \(J/\Psi \) and \(\Upsilon \), by the following form:

    $$\begin{aligned}{} & {} f(x,k_{t}^{2},M_{{h}})\nonumber \\ {}{} & {} \quad =\int \limits _{-\infty }^{+\infty }\frac{\text {d}\nu }{2\pi ^{2}}\mathcal {C}\frac{\Gamma (\delta -i\nu -\frac{1}{2})}{\Gamma (\delta )}\left( \frac{1}{x}\right) ^{\chi (\frac{1}{2}+i\nu )} \left( \frac{k_{t}^{2}}{Q_{0}^{2}}\right) ^{\frac{1}{2}+i\nu }\nonumber \\{} & {} \qquad \left\{ 1+\frac{\overline{\alpha }_{s}^{2}\beta _{0}\chi _{0}\left( \frac{1}{2}+i\nu \right) }{8N_{c}}\log \left( \frac{1}{x}\right) \right. \nonumber \\{} & {} \qquad \left. \times \left[ -\psi (\frac{1}{2}+i\nu )-\log \frac{k_{t}^{2}}{M^{2}_{{h}}}\right\} \right] . \end{aligned}$$
    (30)

    In the above equation (i.e., Eq. 30), \(\chi _{0}(\frac{1}{2}+i\nu )\) and \(\chi (\gamma )\) are respectively the LO and the next-to-leading order (NLO) eigenvalues of the BFKL kernel, and \(\beta _{0}=11-\frac{2}{3}n_{f}\) with \(n_{f}\) the number of active quarks. Here, \(\overline{\alpha }_{s}=\frac{3}{\pi }\alpha _{s}(\mu ^{2})\) with \(\mu ^{2}=Q_{0}M_{h}\), where \(M_{h}\) plays the role of the hard scale which can be identified with the photon virtuality, \(\sqrt{Q^{2}}\).

  •  \(\mathbf {\textrm{WMR}~ \textrm{model}:}\)

    The WMR model [38] depends on an extra-scale \(\mu \), fixed at Q, by the following form:

    $$\begin{aligned} f(x,k_{t}^{2},\mu ^{2})= & {} T_{g}(k_{t}^{2},\mu ^{2})\frac{\alpha _{s}(k_{t}^{2})}{2\pi } \int \limits _{x}^{1}\text {d}z\nonumber \\{} & {} \times \left[ \sum _{q}P_{gq}(z)\frac{x}{z}q\left( \frac{x}{z},k_{t}^{2}\right) + P_{gg}(z)\right. \nonumber \\{} & {} \left. \times \frac{x}{z}g \left( \frac{x}{z},k_{t}^{2}\right) \Theta \left( \frac{\mu }{\mu +k_{t}}-z\right) \right] ,\nonumber \\ \end{aligned}$$
    (31)

    where \(T_{g}(k_{t}^{2},\mu ^{2})\) gives the probability of evolving from the scale \(k_{t}\) to the scale \(\mu \) without parton emission, and \(P_{ij}^{,}\)s are the splitting functions.

  •  \(\mathbf {\textrm{GBW}~ \textrm{model}:}\)

    This model [1,2,3,4] derives from the effective dipole cross section \(\sigma (x,\textbf{r})\) for the scattering of a \(q\overline{q}\) pair of a nucleon by the following form:

    $$\begin{aligned} f(x,k_{t}^{2})= & {} k_{t}^{4}\sigma _{0}\frac{R_{0}^{2}(x)}{2\pi }e^{-k_{t}^{2}R_{0}^{2}(x)}, \end{aligned}$$
    (32)

    with \(R_{0}^{2}(x)=\frac{1}{\textrm{GeV}^{2}}\left( \frac{x}{x_{0}}\right) ^{\lambda }\).

A novel UGD parameterization derived on the basis of a spectator model input, which is widely employed in the context of exploratory studies on gluon TMDs, is summarized in Refs. [45] and [66]. The model is based on the assumption that a nucleon can emit a gluon, and what remains after the emission is treated as a single spectator particle.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroun, G.R. The unintegrated gluon distribution from the GBW and BGK models. Eur. Phys. J. A 60, 48 (2024). https://doi.org/10.1140/epja/s10050-024-01255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01255-0

Navigation