Skip to main content
Log in

Neutrino and Antineutrino captures on \(^{18}\)O within QRPA models

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work we have evaluated the neutrino (NS) and antineutrino (AS) scattering cross sections on \(^{18}\)O and the inclusive muon capture rates at low energies within the Quasiparticle Random Phase Approximation (QRPA) and Projected QRPA (PQRPA) models. We present the first study of \(^{18}\)O\((\nu _e,e^-)^{18}\)F and \(^{18}\)O\((\bar{\nu }_e,e^+)^{18}\)N cross sections. These reactions are an important nuclear input for astrophysical calculations such as the CNO cycle. We have employed the weak formalism developed in Krmpotić et al. (Phys Rev C 71:044319, 2005) to analyze neutrino/antineutrino-nucleus scattering. Within this formalism, the nuclear residual interaction is described by \(\delta \)-force previously employed to evaluate single and double beta decays in QRPA models. The adopted parametrization leads to good results for the inclusive muon capture: we reproduce the available experimental data for the rate and the Gamow–Teller strength in \(^{18}\)F. We compared our results for the NS and AS cross sections on \(^{18}\)O with other theoretical evaluations on \(^{16}\)O, since there are no experimental data available for the processes on \(^{18}\)O. We noticed that the cross sections present a similar behavior as a function of the neutrino/antineutrino energy. For NS and AS we observed that the PQRPA procedure yields cross sections smaller than QRPA. We show that the Pauli blocking has an important role in the distribution of the partial contributions and the presence of two neutrons over the closed shell yields to higher NS cross sections than the AS cross sections. For NS and AS, the largest contribution comes from allowed and first-forbidden transitions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Our paper has no associated data or the data will not be deposited.]

Notes

  1. On the other hand, Sagawa et al. [44] discuss that no convincing evidence has been found about the spin-triplet pairing correlations in nuclei, such as the Wigner energy term in the mass formula, the enhancement of neutron–proton pair transfer cross sections, the inversion of \(J = 0^+\) and \(J = 1^+\) states, and the large enhancement of GT strength in the low-energy region of \(N = Z\) and \(N = Z + 2\) nuclei.

  2. The BCS, PBCS, QRPA and PQRPA equations are detailed in previous works, see for example the references  [24, 26, 28].

  3. We use here the angular momentum coupling scheme \(\vert (\frac{1}{2},l)j \rangle \) [3].

  4. Private communication.

References

  1. Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998)

  2. J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic Nuclear Theory (Springer, Berlin, 2007)

  3. V.S. dos Ferreira, F. Krmpotić, C.A. Barbero, A.R. Samana, Phys. Rev. C 96, 044322 (2017)

  4. V.S. dos Ferreira, A.R. Samana, F. Krmpotić, M. Chiapparini, Phys. Rev. C 101, 044314 (2020)

  5. K.K. Gaikwad, S. Singh, Y.S. Lee, Environ. Chem. Lett. 16, 523 (2018)

  6. B.A. Brown, B.H. Wildenthal, Ann. Rev. Nucl. Part. Soc. 38, 29 (1988)

  7. H. Miyake, A. Mizukami, Phys. Rev. C 41, 329 (1990)

  8. H.G. Benson, J.M. Irvine, Proc. Phys. Soc. 89, 249 (1966)

  9. W.H. Chung, Singapore J. Phys. 4, 15 (1987); Phys. Abs. 67730 (1987)

  10. J.C. Wheeler, C. Sneden, J.W. Truran Jr., Ann. Rev. Astron. Astrophys. 27, 279 (1989)

    ADS  Google Scholar 

  11. M. Hino, K. Muto, T. Oda, Phys. Rev. C 37, 1328 (1988)

    ADS  Google Scholar 

  12. J.P.F. Sellschop, Nucl. Instrum. Meth. Phys. Res. B 29, 439 (1987)

    ADS  Google Scholar 

  13. H.J. Fischbeck, Bull. Am. Phys. Soc. 33, 1691 (1988)

    Google Scholar 

  14. G.M. Fuller, B.S. Meyer, Astrop. J. 453, 792 (1995)

    ADS  Google Scholar 

  15. A.M. Serenelli, M. Fukugita, APJ 632, L33–L36 (2005)

    ADS  Google Scholar 

  16. T. Suzuki, S. Chiba, T. Yoshida, T. Kajino, T. Otsuka, Phys. Rev. C 74, 034307 (2006)

    ADS  Google Scholar 

  17. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    ADS  Google Scholar 

  18. E. Kolbe, K. Langanke, G. Martínez-Pinedo, P. Vogel, J. Phys. G Nucl. Part. Phys. 29, 2569 (2003)

    ADS  Google Scholar 

  19. F. Cappuzzello, M. Cavallaro, C. Agodi et al., Eur. Phys. J. A 51, 145 (2015)

    ADS  Google Scholar 

  20. G. McLaughlin, G.M. Fuller, Astrop. J. 455, 202 (1995)

    ADS  Google Scholar 

  21. Y.-Z. Qian, J. Wassweburg, Phys. Rep. 442, 237 (2007)

    ADS  Google Scholar 

  22. P. Vogel, M.R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986)

    ADS  Google Scholar 

  23. N. Paar, D. Vretenar, T. Marketin, P. Ring, Phys. Rev. C 77, 024608 (2008)

    ADS  Google Scholar 

  24. F. Krmpotić, A. Samana, A. Mariano, Phys. Rev. C 71, 044319 (2005)

    ADS  Google Scholar 

  25. F. Krmpotić, A. Mariano, A. Samana, Phys. Lett. B 541, 298 (2002)

    ADS  Google Scholar 

  26. A.R. Samana, F. Krmpotić, C.A. Bertulani, Comp. Phys. Commun. 181, 1123 (2010)

    ADS  Google Scholar 

  27. E.V. Bugaev et al., Nucl. Phys. A 324, 350 (1979)

    ADS  Google Scholar 

  28. A. Aguilar, L.B. Auerbach, R.L. Burman, D.O. Caldwell, E.D. Church, A.K. Cochran et al., Phys. Rev. D 64, 112007 (2001)

    ADS  Google Scholar 

  29. A.R. Samana et al., New J. Phys. 10, 033007 (2008)

    ADS  Google Scholar 

  30. O. Civitarese, P.O. Hess, J.G. Hirsch, Phys. Lett. B 412, 1 (1997)

    ADS  Google Scholar 

  31. F. Krmpotić, A. Mariano, T.T.S. Kuo, K. Nakayama, Phys. Lett. B 319, 393 (1993)

    ADS  Google Scholar 

  32. D. Sande Santos et al., Proceedings of Science, Volume 142—XXXIV Edition of the Brazilian Workshop on Nuclear Physics (XXXIV BWNP), March 20, 2012. https://doi.org/10.22323/1.142.0120

  33. A. Samana, F. Krmpotić, A. Mariano, R.Z. Funchal, Phys. Lett. B 642, 100 (2006)

    ADS  Google Scholar 

  34. T.W. Donnelly, W.C. Haxton, Atom. Data Nucl. Data Tables 23, 103 (1979)

    ADS  Google Scholar 

  35. T.W. Donnelly, R.D. Peccei, Phys. Rep. 50, 1 (1979)

    ADS  Google Scholar 

  36. T. Kuramoto, M. Fukugita, Y. Kohyama, K. Kubodera, Nucl. Phys. A 512, 711 (1990)

    ADS  Google Scholar 

  37. R.J. Blin-Stoyle, S.C.K. Nair, Adv. Phys. 15, 493 (1966)

    ADS  Google Scholar 

  38. H. Castillo, F. Krmpotić, Nucl. Phys. A 469, 637 (1987). (and references therein)

    ADS  Google Scholar 

  39. M.R. Azevedo, R.C. Ferreira, A.J. Dimarco et al., Braz. J. Phys 50, 57 (2020)

  40. J.S. O’Connell, T.W. Donnelly, J.D. Walecka, Phys. Rev. C 6, 719 (1972)

    ADS  Google Scholar 

  41. A.R. Samana, F. Krmpotic, N. Paar, C.A. Bertulani, Phys. Rev. C 83, 024303 (2011)

    ADS  Google Scholar 

  42. M.-K. Cheoun, E. Ha, K.S. Kim, T. Kajino, J. Phys. G 37, 055101 (2010)

    ADS  Google Scholar 

  43. M.-K. Cheoun, E. Ha, T. Kajino, Phys. Rev. C 83, 028801 (2011)

    ADS  Google Scholar 

  44. H. Sagawa, C.L. Bai, G. Colò, Phys. Scr. 91, 083011 (2016)

    ADS  Google Scholar 

  45. J. Hirsch, F. Krmpotić, Phys. Rev. C 41, 792 (1990)

    ADS  Google Scholar 

  46. J. Hirsch, F. Krmpotić, Phys. Lett. B 246, 5 (1990)

    ADS  Google Scholar 

  47. F. Krmpotić, J. Hirsch, H. Dias, Nucl. Phys. A 542, 85 (1992)

    ADS  Google Scholar 

  48. A. Bohr, B.R. Mottelson, Nuclear Structure, vol. I (Benjamin, New York, 1969)

    MATH  Google Scholar 

  49. M. Wang et al., Chin. Phys. C 36, 1603 (2012)

    Google Scholar 

  50. K. Nakayama, A.P. Galeão, F. Krmpotić, Phys. Lett. B 114, 217 (1982)

    ADS  Google Scholar 

  51. W. Unkelbach, PhD Thesis, Jül-Spez-472 (1988)

  52. I. Supek, Teorijska Fizika-Zagreb (1964)

  53. K. Ikeda, Prog. Theor. Phys. 31, 434 (1964)

    ADS  Google Scholar 

  54. D.R. Tilley, H.R. Weller, C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 595, 170 (1995)

    Google Scholar 

  55. S. Yoshida, Y. Utsuno, N. Shimizu, T. Otsuka, Phys. Rev. C 97, 054321 (2018)

    ADS  Google Scholar 

  56. V. Gillet, N.V. Mau, Nuc. Phys. 54, 321 (1964)

    Google Scholar 

  57. F. Krmpotić, S.S. Sharma, Nucl. Phys. A 572, 329 (1994)

    ADS  Google Scholar 

  58. H. Fujita, Y. Fujita, Y. Utsuno, K. Yoshida, T. Adachi, A. Algora et al., Phys. Rev. C 100, 034618 (2019)

    ADS  Google Scholar 

  59. E. Ha, M.-K. Cheoun, H. Sagawa, Prog. Theor. Exp. Phys. 2022, 043D01 (2022)

  60. T. Suzuki, D.F. Measday, J.P. Roalsvig, Phys. Rev. C 35, 2212 (1987). (and references therein)

    ADS  Google Scholar 

  61. J.N. Bahcall, Neutrino Astrophysics (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  62. R. Lazauskas, C. Volpe, Nucl. Phys. A 792, 219 (2007)

    ADS  Google Scholar 

  63. T.T.S. Kuo, F. Krmpotić, Y. Tzeng, Phys. Rev. Lett. 78, 2708 (1997)

    ADS  Google Scholar 

  64. C. Volpe, Particle Physics on the Eve of LHC, pp. 146-153 (2009). https://doi.org/10.1142/9789812837592_0020

  65. J.A. Halbelib, R.A. Sorensen, Nucl. Phys. A 98, 542 (1967)

    ADS  Google Scholar 

Download references

Acknowledgements

A.R.S and M.S acknowledge the financial support of FAPESB (Fundação de Amparo à Pesquisa do Estado da Bahia), T.O. PIE0013/2016 and to UESC/PROPP 0010299-61. C.A.B. is fellow of the CONICET, CCT La Plata (Argentina) and thanks for partial support. We also thank N. Paar for providing us with the spe for \(^{18}\)O, evaluated within the DD-ME2 model. This work has been done as a part of the Project INCT-Física Nuclear e Aplicações, Project number 464898/2014-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. dos Santos.

Additional information

Communicated by Takashi Nakatsukasa.

Appendices

Appendix A: Relationship F and G NME

In this appendix, we give the relationship for G particle-particle (pp) and F particle-hole (ph) nuclear matrix elements with a general residual interaction V (following the conventions from the Unkelbach’s thesis [51]):

$$\begin{aligned} V=\frac{1}{4} \sum _{abcd}V_{abcd}^{as} \textbf{a}^{\dagger }_a \textbf{a}^{\dagger }_b \textbf{a}_c \textbf{a}_d, \end{aligned}$$
(44)

with the antisymmetrized matrix element:

$$\begin{aligned} V_{abcd}^{as}=_a\langle ab \vert V\vert cd \rangle _a = \langle ab \vert V\vert cd \rangle -\langle ab \vert V\vert dc \rangle , \end{aligned}$$
(45)

and \( \vert cd \rangle _a = \frac{1}{\sqrt{2}}[\vert c \rangle \vert d \rangle -\vert d \rangle \vert c \rangle . \) Here, we use the coupling \(\vert a \rangle \equiv \vert (\frac{1}{2}\ell _a)j_a \rangle \).

The particle-particle (PP) coupling is:

$$\begin{aligned} \vert ab,J \rangle&=\sum _{m_a m_b} \langle j_a m_a j_b m_b \vert JM \rangle \vert j_a m_a j_b m_b \rangle , \end{aligned}$$
(46)

and the particle-hole (ph) coupling is:

$$\begin{aligned} \vert ab^{-1},J \rangle&=\sum _{m_am_b}(-1)^{j_a-m_a} \langle j_a m_a j_b -m_b \vert JM \rangle \nonumber \\&\quad \vert j_a m_a(j_bm_b)^{-1} \rangle , \end{aligned}$$
(47)

where \(\vert a^{-1} \rangle =\textbf{a}\vert 0 \rangle =\vert (j_am_a)^{-1} \rangle =(-1)^{j_a-m_a} \vert j_a-m_a \rangle \).

The antisymmetrized pp state is:

$$\begin{aligned} \vert ab,J \rangle _a =\frac{1}{\sqrt{1+\delta _{a,b}}}\sum _{m_am_b} \langle j_a m_a j_b m_b \vert JM \rangle \vert j_am_aj_bm_b \rangle , \end{aligned}$$
(48)

with the property: \(\vert ab,J \rangle _a =(-1)^{j_a+j_b-J+1} \vert ba,J \rangle _a\).

The pp matrix element is defined as:

$$\begin{aligned} G(abcd;J)&=\sum _{m_am_bm_cm_d} \langle j_a m_a j_b m_b \vert JM \rangle \nonumber \\&\qquad \langle j_c m_c j_d m_d \vert JM \rangle V_{abcd}, \end{aligned}$$
(49)

and the ph matrix element as:

$$\begin{aligned} F(abcd;J)= & {} \sum _{m_am_bm_cm_d} (-1)^{j_a-m_a} (-1)^{j_c-m_c}\nonumber \\{} & {} \qquad \langle j_a m_a j_b -m_b \vert JM \rangle \nonumber \\{} & {} \quad \times \langle j_c m_c j_d -m_d \vert JM \rangle V_{abcd}^{PH}, \end{aligned}$$
(50)

where

$$\begin{aligned} V_{abcd}^{ph} =\langle ab^{-1} \vert V\vert cd^{-1} \rangle = \langle ad \vert V\vert bc \rangle =V_{adbc}^{pp}. \end{aligned}$$
(51)

Thus

$$\begin{aligned} F(abcd;J)= & {} \sum _{m_am_bm_cm_d} (-1)^{j_a-m_a} (-1)^{j_c-m_c}\nonumber \\{} & {} \quad \langle j_am_aj_b-m_b \vert JM \rangle \nonumber \\{} & {} \quad \times \langle j_cm_cj_d-m_d \vert JM \rangle V_{adbc}. \end{aligned}$$
(52)

The pp and the ph matrix elements are related as:

$$\begin{aligned} F(abcd;J)= & {} -\sum _{J'}\hat{J}^{'2} \left\{ \begin{array}{llll} {j_a}&{}{j_d}&{}{J'}\\ {j_c}&{}{j_b}&{}{J} \end{array}\right\} G(dabc;J'). \end{aligned}$$
(53)

Appendix B: NME for \(\delta \)-force

The nuclear matrix elements for the \(\delta \)-residual interaction are taken from Ref. [52, 53]. They were used in several works describing single and double beta decay as well semileptonic interactions as muon capture decay and neutrino capture [3, 4, 24, 45,46,47]. Here, we give a brief summary of main results. The residual interaction \(\delta -\)force (in units of MeV.fm\(^3\))reads

$$\begin{aligned}&V=-4\pi (v_t P_t+v_s P_s )\delta (r), \end{aligned}$$
(B11)

where \(v_t\) and \( v_s \) are the singlet and triplet couplings constants in the pp and ph channels, respectively. The argument \(r=\vert \textbf{r}_1 -\textbf{r}_2 \vert \), and \(P_t\) and \(P_t\) are the spin and isospin-projection operators

$$\begin{aligned} P_t= \Pi _1 \cdot \Lambda _0&,&P_s= \Pi _0 \cdot \Lambda _1, \end{aligned}$$
(B12)

with

$$\begin{aligned} \Pi _0= & {} \frac{1}{2}(1-P_{\sigma })=\frac{1}{4}(1-\varvec{\sigma }\cdot \varvec{\sigma }); \nonumber \\ \Pi _1= & {} \frac{1}{2}(1+P_{\sigma })=\frac{1}{4}(3+\varvec{\sigma }\cdot \varvec{\sigma }), \nonumber \\ \Lambda _0= & {} \frac{1}{2}(1-P_{\tau })=\frac{1}{4}(1-\varvec{\tau }\cdot \varvec{\tau }); \nonumber \\ \Lambda _1= & {} \frac{1}{2}(1+P_{\tau })=\frac{1}{4}(3+\varvec{\tau }\cdot \varvec{\tau }), \end{aligned}$$
(B13)

are the spin-projection \(\Pi _S\) and isospin-projection operators \(\Lambda _T\).

From pg. 642 of Ref. [52] the matrix element for the \(\delta \)-force between non-identical particles are

$$\begin{aligned}{} & {} 4\pi \langle abJ \vert \delta (\vert \textbf{r}_1 -\textbf{r}_2 \vert ) \vert cdJ \rangle _{dir} \nonumber \\{} & {} \quad =\frac{1}{2}R\hat{j}_a \hat{j}_b\hat{j}_c\hat{j}_d(-1)^{j_a+j_b+j_c+j_d} \nonumber \\{} & {} \quad \times \left[ \left( \begin{array}{lll} {j_a}&{} {j_b}&{} {J}\\ {\frac{1}{2}}&{}{\frac{1}{2}}&{}{-1}\end{array}\right) \left( \begin{array}{lll} {j_c}&{}{j_d}&{}{J}\\ {\frac{1}{2}}&{}{\frac{1}{2}}&{}{-1}\end{array}\right) \right. \nonumber \\{} & {} \quad \left. -(-1)^{\ell _b+\ell _d+j_b+j_d} \left( \negthinspace \begin{array}{ccc} j_a&{}j_b&{}J\\ \frac{1}{2}&{}-\frac{1}{2}&{}0\end{array}\right) \left( \negthinspace \begin{array}{ccc} j_c&{}j_d&{}J\\ \frac{1}{2}&{}-\frac{1}{2}&{}0\end{array}\right) \right] , \nonumber \\ \end{aligned}$$
(B14)

and

$$\begin{aligned}{} & {} 4\pi \langle abJ \vert \delta (\vert \textbf{r}_1 -\textbf{r}_2 \vert ) \varvec{\sigma }\cdot \varvec{\sigma }\vert cdJ \rangle _{dir}\nonumber \\{} & {} \quad =\frac{1}{2}R\hat{j}_a \hat{j}_b\hat{j}_c\hat{j}_d(-1)^{j_a+j_b+j_c+j_d} \nonumber \\{} & {} \qquad \times \left[ \left( \negthinspace \begin{array}{ccc} j_a&{}j_b&{}J\\ \frac{1}{2}&{}\frac{1}{2}&{}-1\end{array}\right) \left( \negthinspace \begin{array}{ccc} j_c&{}j_d&{}J\\ \frac{1}{2}&{}\frac{1}{2}&{}-1\end{array}\right) \right. \nonumber \\{} & {} \qquad \left. +\left( 1+2(-1)^{\ell _a+\ell _b+J}\right) (-1)^{\ell _b+\ell _d+j_b+j_d}\right. \nonumber \\{} & {} \left. \qquad \left( \negthinspace \begin{array}{ccc} j_a&{}j_b&{}J\\ \frac{1}{2}&{}-\frac{1}{2}&{}0\end{array}\right) \left( \negthinspace \begin{array}{ccc} j_c&{}j_d&{}J\\ \frac{1}{2}&{}-\frac{1}{2}&{}0\end{array}\right) \right] , \nonumber \\ \end{aligned}$$
(B15)

where

$$\begin{aligned} R\equiv R(abcd)=\int R_aR_bR_cR_d r^2dr. \end{aligned}$$
(B16)

Introducing the shorthand notation:

$$\begin{aligned} g(abJ)= & {} \sqrt{4\pi }\hat{J}^{-1}(-1)^{j_a+j_b+\ell _a+1} \langle a\Vert Y_J\Vert b \rangle \nonumber \\= & {} (-1)^{j_a-\frac{1}{2}+\ell _a}\hat{j}_a\hat{j}_b \left( \negthinspace \begin{array}{ccc} j_a&{}j_b&{}J\\ \frac{1}{2}&{}-\frac{1}{2}&{}0\end{array}\right) , \nonumber \\ h(abJ)= & {} \sqrt{4\pi }\hat{J}^{-1}(-1)^{\ell _a} \langle a\Vert [\varvec{\sigma }\times Y_L]_{J=L}\Vert b \rangle \nonumber \\= & {} (-1)^{j_a+j_b}\hat{j}_a\hat{j}_b \left( \negthinspace \begin{array}{ccc} j_a&{}j_b&{}J\\ \frac{1}{2}&{}\frac{1}{2}&{}-1\end{array}\right) . \nonumber \end{aligned}$$

Finally, the matrices F and G for \(\delta \)-force residual interaction read

$$\begin{aligned}{} & {} G(pnp'n';J) \nonumber \\{} & {} \quad =-v_s\frac{1}{4}R \left( 1+(-1)^{\ell _p+\ell _n+J}\right) g(pnJ)g(p'n'J) \nonumber \\{} & {} \qquad -v_t\frac{1}{4}R [ 2h(pnJ)h(p'n'J)\nonumber \\{} & {} \qquad + \left( 1-(-1)^{\ell _p+\ell _n+J}\right) g(pnJ)g(p'n'J) \nonumber \\{} & {} \quad \times g(pnJ)g(p'n'J)], \end{aligned}$$
(B17)
$$\begin{aligned}{} & {} F(pnp'n';J)\nonumber \\{} & {} \quad =\frac{R}{4}(-1)^{\ell _p+\ell _{p'}} \left\{ [v_s+v_t] h(pnJ)h(p'n'J)\right. \nonumber \\{} & {} \quad + \left. \left[ -v_s(-1)^{\ell _p+\ell _n+J} +v_t\left( 2+(-1)^{\ell _p+\ell _n+J}\right) \right] \right. \nonumber \\{} & {} \quad \left. \times g(pnJ)g(p'n'J)\right\} . \end{aligned}$$
(B18)

According to the hypothesis of Halbleib and Sorensen on the particle-hole force [65], the parameters \(v_s\) and \(v_t\) of the previous equations are different. For pp we have the t and s parameters defined in Eq. (23) related with \(v_t\) and \(v_t\) of Eq. (B17). While for the ph channel, we have the ph-coupling constants, \(v_s^\textrm{ph}\) and \(v_t^\textrm{ph}\) for Eq. (B18).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, M., Khalili, H., Samana, A.R. et al. Neutrino and Antineutrino captures on \(^{18}\)O within QRPA models. Eur. Phys. J. A 59, 31 (2023). https://doi.org/10.1140/epja/s10050-023-00944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00944-6

Navigation