Skip to main content
Log in

Candidate revolving chiral doublet bands in \({}^{119}\)Cs

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Two rotational bands are identified in \(^{119}\)Cs, one of which having very similar pattern to that of the strongly-coupled \(\pi g_{9/2}[404]9/2^+\) band. The properties of the bands with similar patterns extracted from the experimental data are in agreement with a chiral interpretation. Tilted axis cranking covariant density functional theory with pairing correlations and particle-number conserving cranked shell model calculations are employed to determine the deformation and to investigate the band configurations, respectively. It results that the backbending is induced by the rotational alignment of two \(h_{11/2}\) protons, whose angular momenta reorient from the short to the intermediate axis, in a plane orthogonal to the angular momentum of the strongly-coupled \(g_{9/2}\) proton which keeps aligned along the long axis. The total spin points in 3D, inducing the breaking of the chiral symmetry. This is the first observation of candidate chiral bands built on a configuration with three protons, one in the strongly coupled \([404]9/2^+\) orbital which does not change orientation with increasing rotational frequency, and two in the \(h_{11/2}\) orbital which reorients to the rotation axis. The bands are observed in the transient backbending regime, showing that the chirality in nuclei is a general phenomenon, being robust and present not only in nuclei with nearly maximal triaxiality and pure configurations, but also in nuclei with moderate triaxiality and mixed configurations which gradually evolve from one to three-quasiparticle configurations, like in the backbending region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No further data are associated with this paper.]

References

  1. S. Frauendorf, J. Meng, Nucl. Phys. A 617, 131 (1997)

    Article  ADS  Google Scholar 

  2. V.I. Dimitrov, S. Frauendorf, F. Dönau, Phys. Rev. Lett. 84, 5732 (2000)

    Article  ADS  Google Scholar 

  3. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001)

    Article  ADS  Google Scholar 

  4. B.W. Xiong, Y.Y. Wang, Atomic Data Nucl. Data Tables 111–112, 193 (2018)

    Google Scholar 

  5. S. Guo et al., Phys. Lett. B 807, 135572 (2020)

    Article  Google Scholar 

  6. B.F. Lv et al., Phys. Rev. C 100, 024314 (2019)

    Article  ADS  Google Scholar 

  7. C.M. Petrache et al., Eur. Phys. J. A 56, 208 (2020)

    Article  Google Scholar 

  8. C.M. Petrache et al., Phys. Rev. C 97, 041304(R) (2018)

    Article  ADS  Google Scholar 

  9. S. Zhu et al., Eur. Phys. J. A 25, 459 (2005)

    Article  Google Scholar 

  10. S. Zhu et al., Phys. Lett. B 670, 307 (2009)

    Article  ADS  Google Scholar 

  11. NNDC Online Data Service, ENSDF database, http://www.nndc.bnl.gov/ensdf/

  12. J. Pakarinen et al., Eur. Phys. J. A 56, 149 (2020)

    Article  ADS  Google Scholar 

  13. J. Sarén et al., Nucl. Instr. Meth. Phys. Res. A 266, 4196 (2008)

    Article  ADS  Google Scholar 

  14. P. Rahkila, Nucl. Instrum. Meth. Phys. Res. A 595, 637 (2008)

    Article  ADS  Google Scholar 

  15. D. Radford, Nucl. Instrum. Meth. Phys. Res. A 361, 297 (1995)

    Article  ADS  Google Scholar 

  16. D. Radford, Nucl. Instrum. Meth. Phys. Res. A 361, 306 (1995)

    Article  ADS  Google Scholar 

  17. V. Iacob, G. Duchêne, Nucl. Instr. Meth. Phys. Res. A 339(1), 57 (1997)

    Article  ADS  Google Scholar 

  18. K. Starosta et al., Nucl. Instr. Meth. Phys. Res. A 423(1), 16 (1999)

    Article  ADS  Google Scholar 

  19. K.K. Zheng et al., Phys. Rev. C 104, 044305 (2021)

    Article  ADS  Google Scholar 

  20. F. Lidén et al., Nucl. Phys. A 550, 365 (1992)

    Article  ADS  Google Scholar 

  21. P. Möller, R. Bengtsson, B.G. Carlsson, P. Olivius, T. Ichikawa, H. Sagawa, A. Iwamoto, Atomic Data Nucl. Data Tables 94, 758 (2008)

    Article  ADS  Google Scholar 

  22. C. Thibault et al., Nucl. Phys. A 550, 365 (1992)

    Article  Google Scholar 

  23. P.W. Zhao, S.Q. Zhang, J. Peng, H.Z. Liang, P. Ring, J. Meng, Phys. Lett. B 699, 181 (2011)

    Article  ADS  Google Scholar 

  24. P.W. Zhao, J. Peng, S.Q. Zhang, P. Ring, J. Meng, Phys. Rev. Lett. 107, 122501 (2011)

    Article  ADS  Google Scholar 

  25. P.W. Zhao, S.Q. Zhang, J. Meng, Phys. Rev. C 92, 034319 (2015)

    Article  ADS  Google Scholar 

  26. Y.K. Wang, Phys. Rev. C 96, 054324 (2017)

    Article  ADS  Google Scholar 

  27. Y.K. Wang, Phys. Rev. C 97, 064321 (2018)

    Article  ADS  Google Scholar 

  28. P.W. Zhao, Z.P. Li, J.M. Yao, J. Meng, Phys. Rev. C 82, 054319 (2010)

    Article  ADS  Google Scholar 

  29. Y. Tian, Y. Ma, P. Ring, Phys. Lett. B 676, 44 (2009)

    Article  ADS  Google Scholar 

  30. J.Y. Zeng, T.H. Jin, Z.J. Zhao, Phys. Rev. C 50, 1388 (1994)

    Article  ADS  Google Scholar 

  31. J.M. Sears et al., Phys. Rev. C 57, 2991 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. P. W. Zhao for stimulating and useful discussions. This work has been supported by the China Scholarship Council (CSC), CSC No. 201804910386. This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme (2012-2017), by the EU 7th Framework Programme Project No. 262010 (ENSAR), by the United Kingdom Science and Technology Facilities Council, by the National Research Foundation of South Africa (Grants No. 116666 and No. 109134), and by the French Ministry of Foreign Affairs and the Ministry of Higher Education and Research, France (PHC PROTEA Grant No. 42417SE); by the National Research, Development and Innovation Fund of Hungary (Project No. K128947), as well as by the European Regional Development Fund (Contract No. GINOP-2.3.3-15-2016-00034); by the Polish National Science Centre (NCN) Grant No. 2013/10/M/ST2/00427; by the Swedish Research Council under Grant No. 2019-04880; and by the National Natural Science Foundation of China (Grants No. 11505242, No. 11305220, No. U1732139, No. 11775274, and No. 11575255). The use of germanium detectors from the GAMMAPOOL is acknowledged. I.K. was supported by National Research, Development and Innovation Office-NKFIH, contract number PD 124717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Petrache.

Additional information

Communicated by W. Korten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K.K., Petrache, C.M., Zhang, Z.H. et al. Candidate revolving chiral doublet bands in \({}^{119}\)Cs. Eur. Phys. J. A 58, 50 (2022). https://doi.org/10.1140/epja/s10050-022-00704-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00704-y

Keywords

Navigation