Skip to main content
Log in

Particle production at a finite potential step: transition from Euler–Heisenberg to Klein paradox

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Spontaneous pair production for spin-1/2 and spin-0 particles is explored in a quantitative manner for a static \(\tanh \)-Sauter potential step (SS), evaluating the imaginary part of the effective action. We provide finite-valued per unit-surface results, including the exact sharp-edge Klein paradox (KP) limit, which is the upper bound to pair production. At the vacuum instability threshold the spin-0 particle production can surpass that for the spin-1/2 rate. Presenting the effect of two opposite sign Sauter potential steps creating a well we show that spin-0 pair production, contrary to the case of spin-1/2, requires a smoothly sloped wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This article is a theoretical study of the properties of relativistic wave equations, there is no experimental or simulation data associated with this work.]

References

  1. F. Sauter, Zum ‘Kleinschen Paradoxon. Z. Phys. 73, 547–552 (1932). https://doi.org/10.1007/BF01349862

    Article  ADS  MATH  Google Scholar 

  2. R.V. Popov, V.M. Shabaev, D.A. Telnov, I.I. Tupitsyn, I.A. Maltsev, Y.S. Kozhedub, A.I. Bondarev, N.V. Kozin, X. Ma, G. Plunien, T. Stöhlker, D.A. Tumakov, V.A. Zaytsev, How to access QED at a supercritical Coulomb field. Phys. Rev. D 102(7), 076005 (2020). https://doi.org/10.1103/PhysRevD.102.076005arXiv:2008.05005 [hep-ph]

    Article  ADS  Google Scholar 

  3. J. Rafelski, J. Kirsch, B. Müller, J. Reinhardt, W. Greiner, “Probing QED Vacuum with Heavy Ions,”; In: Schramm S., Schäfer M. (eds) New Horizons in Fundamental Physics, pp 211-251, FIAS Interdisciplinary Science Series (Springer 2016). https://doi.org/10.1007/978-3-319-44165-8_17. arXiv:1604.08690 [nucl-th]

  4. C.A. Bertulani, S.R. Klein, J. Nystrand, Physics of ultra-peripheral nuclear collisions. Ann. Rev. Nucl. Part. Sci. 55, 271–310 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151526arXiv:nucl-ex/0502005 [nucl-ex]

    Article  ADS  Google Scholar 

  5. K. Tuchin, Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 490495 (2013). https://doi.org/10.1155/2013/490495arXiv:1301.0099 [hep-ph]

    Article  MathSciNet  Google Scholar 

  6. G.A. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regime. Rev. Mod. Phys. 78, 309–371 (2006). https://doi.org/10.1103/RevModPhys.78.309

    Article  ADS  Google Scholar 

  7. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177 (2012). https://doi.org/10.1103/RevModPhys.84.1177arXiv:1111.3886 [hep-ph]

    Article  ADS  Google Scholar 

  8. R. Ruffini, G. Vereshchagin, S.S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rept. 487, 1–140 (2010). https://doi.org/10.1016/j.physrep.2009.10.004arXiv:0910.0974 [astro-ph.HE]

    Article  ADS  Google Scholar 

  9. E. Churazov, L. Bouchet, P. Jean, E. Jourdain, J. Knödlseder, R. Krivonos, J.-P. Roques, S. Sazonov, T. Siegert, A. Strong, R. Sunyaev, INTEGRAL results on the electron-positron annihilation radiation and X-ray & Gamma-ray diffuse emission of the Milky Way. New Astron. Rev. 90, 101548 (2020). https://doi.org/10.1016/j.newar.2020.101548

    Article  Google Scholar 

  10. F. Sauter, Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs. Z. Phys. 69, 742–764 (1931). https://doi.org/10.1007/BF01339461

    Article  ADS  MATH  Google Scholar 

  11. W. Heisenberg, H. Euler, Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 98, 714 (1936). https://doi.org/10.1007/BF01343663arXiv:physics/0605038

    Article  ADS  MATH  Google Scholar 

  12. V. Weisskopf, The electrodynamics of the vacuum based on the quantum theory of the electron. Kong. Dan. Vid. Sel. Mat. Fys. Med. 14(N6), 1 (1936)

    Google Scholar 

  13. J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951). https://doi.org/10.1103/PhysRev.82.664

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. G.V. Dunne, New strong-field QED effects at ELI: nonperturbative vacuum pair production. Eur. Phys. J. D 55, 327–340 (2009). https://doi.org/10.1140/epjd/e2009-00022-0arXiv:0812.3163 [hep-th]

    Article  ADS  Google Scholar 

  15. G.V. Dunne, H. Gies, R. Schützhold, Catalysis of Schwinger vacuum pair production. Phys. Rev. D 80, 111301 (2009). https://doi.org/10.1103/PhysRevD.80.111301arXiv:0908.0948 [hep-ph]

    Article  ADS  Google Scholar 

  16. O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac. Z. Phys. 53, 157 (1929). https://doi.org/10.1007/BF01339716

    Article  ADS  MATH  Google Scholar 

  17. N. Dombey, A. Calogeracos, Seventy years of the Klein paradox. Phys. Rept. 315, 41–58 (1999). https://doi.org/10.1016/S0370-1573(99)00023-X

    Article  ADS  MATH  Google Scholar 

  18. J. Rafelski, B. Müller, W. Greiner, The charged vacuum in over-critical fields. Nucl. Phys. B 68, 585–604 (1974). https://doi.org/10.1016/0550-3213(74)90333-2

    Article  ADS  Google Scholar 

  19. J. Rafelski, L.P. Fulcher, A. Klein, Fermions and bosons interacting with arbitrarily strong external fields. Phys. Rept. 38, 227–361 (1978). https://doi.org/10.1016/0370-1573(78)90116-3

    Article  ADS  Google Scholar 

  20. W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, Heidelberg, 1985), p. 594p

    Book  Google Scholar 

  21. K.A. Sveshnikov, Y.S. Voronina, A.S. Davydov, P.A. Grashin, Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac-Coulomb system with \( Z >Z_{cr}\): vacuum charge density. Theor. Math. Phys. 198(3), 331–362 (2019). https://doi.org/10.1134/S0040577919030024

    Article  MATH  Google Scholar 

  22. A.I. Nikishov, Barrier scattering in field theory removal of Klein paradox. Nucl. Phys. B 21, 346–358 (1970). https://doi.org/10.1016/0550-3213(70)90527-4

    Article  ADS  Google Scholar 

  23. N.B. Narozhnyi, A.I. Nikishov, The simplest process in a pair-producing electric field. Yad. Fiz. 11, 1072 (1970)

    Google Scholar 

  24. A.I. Nikishov, Scattering and pair production by a potential barrier. Phys. Atom. Nucl. 67, 1478–1486 (2004). https://doi.org/10.1134/1.1788038

    Article  ADS  Google Scholar 

  25. S.P. Kim, H.K. Lee, Y. Yoon, Effective action of QED in electric field backgrounds II. Spatially localized fields. Phys. Rev. D 82, 025015 (2010). https://doi.org/10.1103/PhysRevD.82.025015

    Article  ADS  Google Scholar 

  26. A. Chervyakov, H. Kleinert, Exact pair production rate for a smooth potential step. Phys. Rev. D 80, 065010 (2009). https://doi.org/10.1103/PhysRevD.80.065010

    Article  ADS  Google Scholar 

  27. A. Chervyakov, H. Kleinert, On electron-positron pair production by a spatially inhomogeneous electric field. Phys. Part. Nucl. 49(3), 374–396 (2018). https://doi.org/10.1134/S1063779618030036

    Article  Google Scholar 

  28. S.P. Gavrilov, D.M. Gitman, Quantization of charged fields in the presence of critical potential steps. Phys. Rev. D 93(4), 045002 (2016). https://doi.org/10.1103/PhysRevD.93.045002

    Article  ADS  MathSciNet  Google Scholar 

  29. B. Müller, W. Greiner, J. Rafelski, Interpretation of external fields as temperature. Phys. Lett. A 63, 181 (1977). https://doi.org/10.1016/0375-9601(77)90866-0

    Article  ADS  Google Scholar 

  30. H. Gies, K. Klingmuller, Pair production in inhomogeneous fields. Phys. Rev. D 72, 065001 (2005). https://doi.org/10.1103/PhysRevD.72.065001

    Article  ADS  Google Scholar 

  31. L.I. Schiff, H. Snyder, J. Weinberg, On the existence of stationary states of the Mesotron field. Phys. Rev. 57, 315–318 (1940). https://doi.org/10.1103/PhysRev.57.315

    Article  ADS  Google Scholar 

  32. A. Klein, J. Rafelski, Bose condensation in supercritical external fields. Phys. Rev. D 11, 300 (1976). https://doi.org/10.1103/PhysRevD.11.300

    Article  ADS  Google Scholar 

  33. A. Klein, J. Rafelski, Bose condensation in supercritical external fields. 2. Charged condensates. Z. Phys. A 284, 71 (1978). https://doi.org/10.1007/BF01433878

    Article  ADS  Google Scholar 

  34. B. Müller, J. Rafelski, Stabilization of the charged vacuum created by very strong electrical fields in nuclear matter. Phys. Rev. Lett. 34, 349 (1975). https://doi.org/10.1103/PhysRevLett.34.349

    Article  ADS  Google Scholar 

  35. J. Madsen, Universal charge-radius relation for subatomic and astrophysical compact objects. Phys. Rev. Lett. 100, 151102 (2008). https://doi.org/10.1103/PhysRevLett.100.151102arXiv:0804.2140 [hep-ph]

    Article  ADS  Google Scholar 

  36. T.D. Cohen, D.A. McGady, The Schwinger mechanism revisited. Phys. Rev. D 78, 036008 (2008). https://doi.org/10.1103/PhysRevD.78.036008arXiv:0807.1117 [hep-ph]

    Article  ADS  Google Scholar 

  37. L. Labun, J. Rafelski, Vacuum decay time in strong external fields. Phys. Rev. D 79, 057901 (2009). https://doi.org/10.1103/PhysRevD.79.057901arXiv:0808.0874 [hep-ph]

    Article  ADS  Google Scholar 

  38. K. Krajewska, J.Z. Kamiński, Threshold effects in electron-positron pair creation from the vacuum: stabilization and longitudinal versus transverse momentum sharing. Phys. Rev. A 100(1), 012104 (2019). https://doi.org/10.1103/PhysRevA.100.012104arXiv:1811.07528 [hep-ph]

    Article  ADS  Google Scholar 

  39. H. Gies, G. Torgrimsson, Critical Schwinger pair production II—Universality in the deeply critical regime. Phys. Rev. D 95(1), 016001 (2017). https://doi.org/10.1103/PhysRevD.95.016001

  40. A. Steinmetz, M. Formanek, J. Rafelski, Magnetic dipole moment in relativistic quantum mechanics. Eur. Phys. J. A 55(3), 40 (2019). https://doi.org/10.1140/epja/i2019-12715-5arXiv:1811.06233 [hep-ph]

    Article  ADS  Google Scholar 

  41. K.M. Case, Singular potentials. Phys. Rev. 80, 797–806 (1950). https://doi.org/10.1103/PhysRev.80.797

  42. A. Bialas, Fluctuations of string tension and transverse mass distribution. Phys. Lett. B 466, 301–304 (1999). https://doi.org/10.1016/S0370-2693(99)01159-4arXiv:hep-ph/9909417 [hep-ph]

    Article  ADS  Google Scholar 

  43. W. Florkowski, Schwinger tunneling and thermal character of hadron spectra. Acta Phys. Polon. B 35, 799–808 (2004). arXiv:nucl-th/0309049 [nucl-th]

    ADS  Google Scholar 

  44. R. Schützhold, H. Gies, G. Dunne, Dynamically assisted Schwinger mechanism. Phys. Rev. Lett. 101, 130404 (2008). https://doi.org/10.1103/PhysRevLett.101.130404arXiv:0807.0754 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. A.I. Breev, S.P. Gavrilov, D.M. Gitman, A.A. Shishmarev, Vacuum instability in time-dependent electric fields. New example of exactly solvable case. arXiv:2106.06322 [hep-th]

  46. Y. Kluger, J.M. Eisenberg, B. Svetitsky, F. Cooper, E. Mottola, Fermion pair production in a strong electric field. Phys. Rev. D 45, 4659–4671 (1992). https://doi.org/10.1103/PhysRevD.45.4659

    Article  ADS  Google Scholar 

  47. I. Bialynicki-Birula, L. Rudnicki, Removal of the Schwinger nonanaliticity in pair production by adiabatic switching of the electric field. arXiv:1108.2615 [hep-th]

  48. R.F. O’Connell, Effect of the anomalous magnetic moment of the electron on the nonlinear Lagrangian of the electromagnetic field. Phys. Rev. 176, 1433–1437 (1968). https://doi.org/10.1103/PhysRev.176.1433

    Article  ADS  Google Scholar 

  49. W. Dittrich, One loop effective potential with anomalous moment of the electron. J. Phys. A 11, 1191 (1978). https://doi.org/10.1088/0305-4470/11/6/019

    Article  ADS  Google Scholar 

  50. S.I. Kruglov, Pair production and vacuum polarization of arbitrary spin particles with EDM and AMM. Ann. Phys. 293, 228–239 (2001). https://doi.org/10.1006/aphy.2001.6186arXiv:hep-th/0110061 [hep-th]

    Article  ADS  Google Scholar 

  51. R. Angeles-Martinez, M. Napsuciale, Renormalization of the QED of second order spin-\(1/2\) fermions. Phys. Rev. D 85, 076004 (2012). https://doi.org/10.1103/PhysRevD.85.076004arXiv:1112.1134 [hep-ph]

    Article  ADS  Google Scholar 

  52. L. Labun, J. Rafelski, Acceleration and vacuum temperature. Phys. Rev. D 86, 041701 (2012). https://doi.org/10.1103/PhysRevD.86.041701arXiv:1203.6148 [hep-ph]

    Article  ADS  Google Scholar 

  53. S. Evans, J. Rafelski, Vacuum stabilized by anomalous magnetic moment. Phys. Rev. D 98(1), 016006 (2018). https://doi.org/10.1103/PhysRevD.98.016006arXiv:1805.03622 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefan Evans or Johann Rafelski.

Additional information

Communicated by Tamas Biro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, S., Rafelski, J. Particle production at a finite potential step: transition from Euler–Heisenberg to Klein paradox. Eur. Phys. J. A 57, 341 (2021). https://doi.org/10.1140/epja/s10050-021-00654-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00654-x

Navigation