Skip to main content
Log in

Neutron star crustal properties from relativistic mean-field models and bulk parameters effects

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We calculate crustal properties of neutron stars, namely, mass (\(M_\mathrm{crust}\)), radius (\(R_\mathrm{crust}\)) and fraction of moment of inertia (\(\Delta I/I\)) from parametrizations of hadronic relativistic mean-field (RMF) model consistent with symmetric and asymmetric nuclear matter constraints, as well as some stellar boundaries. We verify which one are also in agreement with restrictions of \(\Delta I/I \geqslant 1.4\%\) and \(\Delta I/I \geqslant 7\%\) related to the glitching mechanism observed in pulsars, such as the Vela one. The latter constraint explains the glitches phenomenon when entrainment effects are taken into account. Our findings indicate that these parametrizations pass in the glitching limit for a neutron star mass range of \(M\leqslant 1.82M_\odot \) (\(\Delta I/I \geqslant 1.4\%\)), and \(M\leqslant 1.16M_\odot \) (\(\Delta I/I \geqslant 7\%\)). We also investigate the influence of nuclear matter bulk parameters on crustal properties and find that symmetry energy is the quantity that produces the higher variations on \(M_\mathrm{crust}\), \(R_\mathrm{crust}\), and \(\Delta I/I\). Based on the results, we construct a particular RMF parametrization able to satisfy \(\Delta I/I \geqslant 7\%\) even at \(M=1.4M_\odot \), the mass value used to fit data from the softer component of the Vela pulsar X-ray spectrum. The model also presents compatibility with observational data from PSR J1614−2230, PSR J0348 + 0432, and MSP J0740 + 6620 pulsars, as well as, with data from the Neutron Star Interior Composition Explorer (NICER) mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. R. Wilson, The Nucleon–Nucleon Interaction (Interscience, New York, 1963)

    Google Scholar 

  2. J.H.E. Mattauch, W. Thiele, A.H. Wapstra, Nucl. Phys. 67, 1 (1965)

    Article  Google Scholar 

  3. G.P. Auffray, Phys. Rev. Lett. 6, 120 (1961)

    Article  ADS  Google Scholar 

  4. I. Lindgren, Alpha-, Beta-, and Gamma-Ray Spectroscopy (North-Holland, Amsterdan, 1966)

    Google Scholar 

  5. P. Ring and P. Schuck, The nuclear many-body problem (Springer) (2000)

  6. H.A. Bethe, Annu. Rev. Nucl. Sci. 21, 93 (1971)

    Article  ADS  Google Scholar 

  7. T.H.R. Skyrme, Philos. Mag. 1, 1043 (1956)

    Article  ADS  Google Scholar 

  8. T.H.R. Skyrme, Nucl. Phys. 9, 615 (1959)

    Article  Google Scholar 

  9. J.S. Bell, T.H.R. Skyrme, Philos. Mag. 1, 1055 (1956)

    Article  ADS  Google Scholar 

  10. T. H. R. Skyrme, Proc. Rehovoth Conf. Nucl. Structure (North Holland Publishing Co., 1958) p. 20

  11. J.R. Stone, P.-G. Reinhard, Phys. Rep. 58, 587 (2007)

    Google Scholar 

  12. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980)

    Article  ADS  Google Scholar 

  13. J.-F. Berger, M. Girod, D. Gogny, Comput. Phys. Commun. 63, 365 (1991)

    Article  ADS  Google Scholar 

  14. F. Chappert, M. Girod, S. Hilaire, Phys. Lett. B 668, 420 (2008)

    Article  ADS  Google Scholar 

  15. S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009)

    Article  ADS  Google Scholar 

  16. R. Sellahewa, A. Rios, Phys. Rev. C 90, 054327 (2014)

    Article  ADS  Google Scholar 

  17. C. Gonzalez-Boquera, M. Centelles, X. Viñas, A. Rios, Phys. Rev. C 96, 065806 (2017)

    Article  ADS  Google Scholar 

  18. C. Gonzalez-Boquera, M. Centelles, X. Viñas, L.M. Robledo, Phys. Lett. B 779, 195 (2018)

    Article  ADS  Google Scholar 

  19. C. Mondal, X. Viñas, M. Centelles, J.N. De, Phys. Rev. C 102, 015802 (2020)

    Article  ADS  Google Scholar 

  20. C. Gale, G. Bertsch, S. Das Gupta, Phys. Rev. C 35, 1666 (1987)

  21. C.B. Das, S. Das Gupta, C. Gale, Bao-An Li, Phys. Rev. C 67, 034611 (2003)

  22. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)

    Article  ADS  Google Scholar 

  23. J. Xu, L.W. Chen, B.A. Li, H.-R. Ma, Astrophys. J. 697, 1549 (2009)

    Article  ADS  Google Scholar 

  24. G. Bertsch, J. Borysowicz, H. MacManus, W.G. Love, Nucl. Phys. A 284, 399 (1977)

    Article  ADS  Google Scholar 

  25. H. Nakada, Phys. Rev. C 68, 014316 (2003)

    Article  ADS  Google Scholar 

  26. H. Nakada, Phys. Rev. C 78, 054301 (2008)

    Article  ADS  Google Scholar 

  27. H. Nakada, Phys. Rev. C 81, 027301 (2010)

    Article  ADS  Google Scholar 

  28. H. Nakada, Phys. Rev. C 87, 014336 (2011)

    Article  ADS  Google Scholar 

  29. D.T. Khoa, W. von Oertzen, A.A. Ogloblin, Nucl. Phys. A 602, 98 (1996)

    Article  ADS  Google Scholar 

  30. D.T. Khoa, G.R. Satchler, W. von Oertzen, Phys. Rev. C 56, 934 (1997)

    Article  ADS  Google Scholar 

  31. B. Behera, T.R. Routray, R.K. Satpathy, J. Phys. G24, 2073 (1998)

    Article  ADS  Google Scholar 

  32. B. Behera, X. Viñas, T.R. Routry, M. Centelles, J. Phys. G42, 045103 (2015)

    Article  ADS  Google Scholar 

  33. B. Behera, X. Viñas, M. Bhuyan, T.R. Routry, B.K. Sharma, S.K. Patra, J. Phys. G40, 095105 (2013)

    Article  ADS  Google Scholar 

  34. B. Behera, X. Viñas, T.R. Routry, L.M. Robledo, M. Centelles, S.P. Pattnaik, J. Phys. G43, 045115 (2016)

    Article  ADS  Google Scholar 

  35. H. Müller, B.D. Serot, Nucl. Phys. A 606, 508 (1996)

    Article  ADS  Google Scholar 

  36. M. Dutra, O. Lourenço, S.S. Avancini, B.V. Carlson, A. Delfino, D.P. Menezes, C. Providência, S. Typel, J.R. Stone, Phys. Rev. C 90, 055203 (2014)

    Article  ADS  Google Scholar 

  37. O. Lourenço, M. Dutra, C.H. Lenzi, C.V. Flores, D.P. Menezes, Phys. Rev. C 99, 045202 (2019)

    Article  ADS  Google Scholar 

  38. G. Baym, C.J. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971)

    Article  ADS  Google Scholar 

  39. G. Baym, C.J. Pethick, P. Sutherland, Nucl. Phys. A. 175, 225 (1971)

    Article  ADS  Google Scholar 

  40. N. Chamel, P. Haensel, Liv. Rev. Relat. 11, 10 (2008)

    Article  Google Scholar 

  41. C.J. Pethick, D.G. Ravenhall, Ann. Rev. Nucl. Part. Sci. 45, 429 (1995)

    Article  ADS  Google Scholar 

  42. C.J. Pethick, D.G. Ravenhall, C.P. Lorenz, Nucl. Phys. A 584, 675 (1995)

    Article  ADS  Google Scholar 

  43. J.M. Lattimer, M. Prakash, Phys. Rep. 333, 121 (2000)

    Article  ADS  Google Scholar 

  44. J.M. Lattimer, M. Prakash, Astrophys. J. 550, 426 (2001)

    Article  ADS  Google Scholar 

  45. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)

    Article  ADS  Google Scholar 

  46. A.W. Steiner, M. Prakash, J.M. Lattimer, P.J. Ellis, Phys. Rep. 410, 325 (2005)

    Article  ADS  Google Scholar 

  47. R.C. Duncan, Astrophys. J. 498, L45 (1998)

    Article  ADS  Google Scholar 

  48. B. Link, R.I. Epstein, J.M. Lattimer, Phys. Rev. Lett. 83, 3362 (1999)

    Article  ADS  Google Scholar 

  49. W.C.G. Ho, C.M. Espinoza, D. Antonopoulou, N. Andersson, Sci. Adv. 1, 1500578 (2015)

    Article  ADS  Google Scholar 

  50. J.W.T. Hessels, S.M. Ransom, I.H. Stairs, P.C.C. Freire, V.M. Kaspi, F. Camilo, Science 311, 1901 (2006)

    Article  ADS  Google Scholar 

  51. A. G. Lyne, Pulsars: problems and Progress (IAU Colloq.160), edited by S. Johnston, M.A. Walker, M. Bailes (ASP, San Francisco, CA, USA, 1996) p. 73

  52. V.M. Kaspi, J.R. Lackey, D. Chakrabarty, Astrophys. J. 537, L31 (2000)

    Article  ADS  Google Scholar 

  53. P. Anderson, N. Itoh, Nat. (Lond.) 256, 25 (1975)

    Article  ADS  Google Scholar 

  54. D. Pines, M. Alpar, Nat. (Lond.) 316, 27 (1985)

    Article  ADS  Google Scholar 

  55. D. Atta, S. Mukhopadhyay, D.N. Basu, Indian J. Phys. 91, 235 (2017)

    Article  ADS  Google Scholar 

  56. K. Madhuri, D.N. Basu, T.R. Routray, S.P. Pattnaik, Eur. Phys. J. A 53, 151 (2017)

    Article  ADS  Google Scholar 

  57. Ch. Margaritis, P.S. Koliogiannis, Ch.C. Moustakidis. arXiv:2102.10948 [nucl-th]

  58. N. Andersson, K. Glampedakis, W.C.G. Ho, C.M. Espinoza, Phys. Rev. Lett. 109, 241103 (2012)

    Article  ADS  Google Scholar 

  59. N. Chamel, Phys. Rev. Lett. 110, 011101 (2013)

    Article  ADS  Google Scholar 

  60. M. Dutra, O. Lourenço, D.P. Menezes, Phys. Rev. C 93, 025806 (2016)

    Article  ADS  Google Scholar 

  61. M. Dutra, O. Lourenço, D. P. Menezes, Phys. Rev. C 94, 049901(E) (2016)

  62. Jodrell Bank Centre for Astrophysics Glitch Catalogue. http://www.jb.man.ac.uk/pulsar/glitches.html. Accessed 1 Apr 2021

  63. C.M. Espinoza, A.G. Lyne, B.W. Stappers, M. Kramer, MNRAS 414, 1679 (2011)

    Article  ADS  Google Scholar 

  64. J.D. Walecka, Ann. Phys. 83, 491 (1974)

    Article  ADS  Google Scholar 

  65. J. Piekarewicz, F.J. Fattoyev, Phys. Rev. C 99, 045802 (2019)

    Article  ADS  Google Scholar 

  66. J.L. Zdunik, M. Fortin, P. Haensel, Astron. Astrophys. 599, A119 (2017)

    Article  ADS  Google Scholar 

  67. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron stars 1: equation of state and structure (Springer, New York, 2007)

  68. L. Tsaloukidis, Ch. Margaritis, ChC Moustakidis, Phys. Rev. C 99, 015803 (2019)

    Article  ADS  Google Scholar 

  69. C. Gonzalez-Boquera, M. Centelles, X. Viñas, T.R. Routray, Phys. Rev. C 100, 015806 (2019)

    Article  ADS  Google Scholar 

  70. B.K. Agrawal, Phys. Rev. C 81, 034323 (2010)

    Article  ADS  Google Scholar 

  71. S.K. Dhiman, R. Kumar, B.K. Agrawal, Phys. Rev. C 76, 034323 (2007)

    Article  Google Scholar 

  72. R. Kumar, B.K. Agrawal, S.K. Dhiman, Phys. Rev. C 74, 034323 (2006)

    Article  ADS  Google Scholar 

  73. A. Sulaksono, T. Mart, Phys. Rev. C 74, 045806 (2006)

    Article  ADS  Google Scholar 

  74. F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev. C 82, 055803 (2010)

    Article  ADS  Google Scholar 

  75. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  76. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

  77. F.J. Fattoyev, J. Piekarewicz, Phys. Rev. C 82, 025810 (2010)

    Article  ADS  Google Scholar 

  78. J. Piekarewicz, F.J. Fattoyev, C.J. Horowitz, Phys. Rev. C 90, 015803 (2014)

    Article  ADS  Google Scholar 

  79. J.M. Lattimer, M. Prakash, Phys. Rep. 333–334, 121 (2000)

    Article  ADS  Google Scholar 

  80. L.A. Souza, M. Dutra, C.H. Lenzi, O. Lourenço, Phys. Rev. C 101, 065202 (2020)

    Article  ADS  Google Scholar 

  81. M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, P. D. Stevenson, Phys. Rev. C 85, 035201 (2012)

  82. O. Lourenço, M. Dutra, D.P. Menezes, Phys. Rev. C 95, 065212 (2017)

    Article  ADS  Google Scholar 

  83. O. Lourenço, B.M. Santos, M. Dutra, A. Delfino, Phys. Rev. C 94, 045207 (2016)

    Article  ADS  Google Scholar 

  84. O. Lourenço, M. Dutra, C.H. Lenzi, M. Bhuyan, S.K. Biswal, B.M. Santos, Astrophys. J. 882, 67 (2019)

    Article  ADS  Google Scholar 

  85. B.-A. Li, X. Han, Phys. Lett. B 727, 276 (2013)

    Article  ADS  Google Scholar 

  86. M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)

    Article  ADS  Google Scholar 

  87. U. Garg, G. Colò, Prog. Part. Nucl. Phys. 101, 55 (2018)

    Article  ADS  Google Scholar 

  88. R.J. Furnstahl, J.J. Rusnak, B.D. Serot, Nucl. Phys. A 632, 607 (1998)

    Article  ADS  Google Scholar 

  89. G.G. Pavlov, V.E. Zavlin, D. Sanwal, V. Burwitz, G.P. Garmire, Astrophys. J. 552, L129 (2001)

    Article  ADS  Google Scholar 

  90. B.T. Reed, F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 126, 172503 (2021)

    Article  ADS  Google Scholar 

  91. D. Adhikari et al., Phys. Rev. Lett. 126, 172502 (2021)

    Article  ADS  Google Scholar 

  92. J. Estee et al., Phys. Rev. Lett. 126, 162701 (2021)

    Article  ADS  Google Scholar 

  93. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  94. J. Antoniadis, P.C.C. Freire, N. Wex, T. Tauris et al., Science 340, 6131 (2013)

    Article  ADS  Google Scholar 

  95. H.T. Cromartie, E. Fonseca, S.M. Ransom, P. Demorest et al., Nat. Astron. 4, 72 (2020)

    Article  ADS  Google Scholar 

  96. M.C. Miller et al., Astrophys. J. Lett. 887, L24 (2019)

    Article  ADS  Google Scholar 

  97. T.E. Riley, A.L. Watts, S. Bogdanov, P.S. Ray, R.M. Ludlam, S. Guillot et al., Astrophy. J. Lett. 887, L21 (2019)

    Article  ADS  Google Scholar 

  98. S. Bogdanov, S. Guillot, P.S. Ray, M.T. Wolff, D. Chakrabarty, W.C.G. Ho et al., Astrophy. J. Lett. 887, L25 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is a part of the Project INCT-FNA Proc. No. 464898/2014-5. It is also supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grants Nos. 310242/2017-7, 312410/2020-4, 406958/2018-1 (O.L.), No. 433369/2018-3 (M.D.), and 438562/2018-6, 313236/2018-6 (W.P.). We acknowledge the partial support of CAPES under Grant No. 88881.309870/2018-01 (W.P.). We also acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Thematic Project 2017/05660-0 and Grant No. 2020/05238-9 (O.L., M.D., C.H.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dutra.

Additional information

Communicated by Laura Tolos.

Appendix

Appendix

Here we derive the mainly equations of the approach used for the crustal star properties, based on the core equation of state and macroscopic properties of the core-crust interface [66]. This formalism is based on the assumption that the mass of the crust, \(M_\mathrm{crust}\), is much smaller than the total mass of the star, M. We start by constructing the Tolman–Oppenheimer–Volkoff equations.

In order to describe a spherically symmetric object, we use the metric given by

$$\begin{aligned} ds^2 = e^{\varphi (r)} \, c^2 \, dt^2 - e^{\xi (r)} dr^2 - r^2 \left( d\theta ^2 + \sin ^2\theta d\phi ^2\right) . \end{aligned}$$
(18)

We consider the stress-energy tensor for a perfect fluid as \(T_{\mu \nu } = \left( P/c^2+\rho \right) u_{\mu }\, u_{\nu } - g_{\mu \nu } \, P/c^2 \), where P is the pressure and \(\mathcal {E}\) is energy density. The quadrivelocity \(u_{\mu }\) fulfills \(u_{\mu } \, u^{\mu }=1\) and \(\, u^{\mu } \nabla _{\nu }u_{\mu } =0\). By defining

$$\begin{aligned} e^{-\xi } = \left[ 1 - \frac{2 G m(r)}{r c^2}\right] , \end{aligned}$$
(19)

where \(m=m(r)\) represents the mass inside a sphere of radius r, we obtain the system of equations that governs the hydrostatic equilibrium of the compact star, namely,

$$\begin{aligned} m'(r)&= 4 \pi \mathcal {E}(r) \, r^2, \end{aligned}$$
(20)
$$\begin{aligned} P'(r)&= \nonumber \\&- \frac{\left[ P(r)/c^2+ \mathcal {E}(r) \right] \left[ \frac{4 \pi G}{c^2}\, r \, P(r) + \frac{G \, m(r)}{r^2}\right] }{\left[ 1 - \frac{2 \, G\, m(r)}{r c^2}\right] } \, . \end{aligned}$$
(21)

In the limit \(M_\mathrm{crust} \ll M\), we have \(4\pi r^3 P(r)/[m(r)c^2] \ll 1\). Therefore, for the crust we can write Eq. (21) as

$$\begin{aligned} \frac{P'(r)}{P(r) + \mathcal {E}(r)\, c^2} = - \frac{G \, m(r)}{c^2 \, r^2} \left[ 1 - \frac{2 \, G\, m(r)}{r c^2}\right] ^{-1} \, . \end{aligned}$$
(22)

We can estimate the contribution of the crust mass by considering an approximation where \(P(r)/c^2\) is much smaller than \(\mathcal {E}(r)\). In the crust region, for \(M_\mathrm{crust} \ll M\) and using \(dm = \mathcal {E}(r) dv = \mathcal {E}(r) 4\pi r^2 dr\), we obtain

$$\begin{aligned} \frac{dP(r)}{dm} = - \frac{G \, M}{4\pi \, r^4} \left[ 1 - \frac{2 \, G\, M}{r c^2}\right] ^{-1} \, . \end{aligned}$$
(23)

Integrating Eq. (23) from the outer crust up to the core-crust interface, we have

$$\begin{aligned} M_\mathrm{crust} = \frac{4\pi P_t R^4_\mathrm{core}}{GM_\mathrm{core}}\left( 1-\frac{2GM_\mathrm{core}}{R_\mathrm{core}c^2}\right) \, . \end{aligned}$$
(24)

On the other hand, one can use the thermodynamic relation \(\mu =d\mathcal {E}/d\rho \) and \(\mu = \left( P(r) + \mathcal {E}(r)\, c^2\right) /\rho \) to write

$$\begin{aligned} \frac{d\mu }{\mu } = \frac{dP}{P(r) + \mathcal {E}(r)\, c^2} \, , \end{aligned}$$
(25)

which is precisely the left hand side of Eq. (22). Combining those expressions and using \(M_\mathrm{core} \ll M\), one obtains, in the crust region, the following:

$$\begin{aligned} \frac{d\mu }{\mu } = - dr \, \frac{G \, M}{c^2 \, r^2} \left[ 1 - \frac{2 \, G\, M}{r c^2}\right] ^{-1} \, . \end{aligned}$$
(26)

Integrating from the outer crust up to the core-crust transition, we have

$$\begin{aligned} \int _{\mu _0}^{\mu _t} \frac{d\mu }{\mu }= & {} - \int _{R_\mathrm{core}}^{R} \frac{G \, M}{c^2 \, r^2} \left[ 1 - \frac{2 \, G\, M}{r c^2}\right] ^{-1} \, dr \, , \end{aligned}$$
(27)
$$\begin{aligned} \left( \frac{\mu _t}{\mu _0}\right) ^2= & {} \dfrac{1-\dfrac{2 \, G\, M}{R\, c^2}}{1- \dfrac{2 \, G\, M}{R_\mathrm{core}\, c^2}} \, , \end{aligned}$$
(28)

where \(\mu _t\) is the baryon chemical potential at the core-crust transition and \(\mu _0\) is the chemical potential at the surface of the neutron star.

Using Eq.(28), one can obtain

$$\begin{aligned} R = \frac{2 \, G \, M \, R_\mathrm{core}}{c^2 \, R_\mathrm{core} + 2 \, G \, M \, \left( \dfrac{\mu _t}{\mu _0}\right) ^2 - c^2 \, R_\mathrm{core} \left( \dfrac{\mu _t}{\mu _0}\right) ^2}\, . \end{aligned}$$
(29)

Finally, the crustal radius is [66]

$$\begin{aligned}&R_\mathrm{crust} = R - R_\mathrm{core} \nonumber \\&= \frac{2 \, G \, M \, R_\mathrm{core}}{c^2 \, R_\mathrm{core} + 2 \, G \, M \, \left( \dfrac{\mu _t}{\mu _0}\right) ^2 - c^2 \, R_{core} \left( \dfrac{\mu _t}{\mu _0}\right) ^2} - R_{core} \nonumber \\&= \phi R_\mathrm{core} \left[ \frac{1-R_\mathrm{s}/R_\mathrm{core}}{1-\phi \left( 1-R_\mathrm{s}/R_\mathrm{core}\right) }\right] , \end{aligned}$$
(30)

with \(R_\mathrm{s} = 2GM/c^2\) and \(\phi = [(\mu _t/\mu _0)^2 - 1]R_\mathrm{core}/R_\mathrm{s}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, M., Lenzi, C.H., de Paula, W. et al. Neutron star crustal properties from relativistic mean-field models and bulk parameters effects. Eur. Phys. J. A 57, 260 (2021). https://doi.org/10.1140/epja/s10050-021-00558-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00558-w

Navigation