Skip to main content
Log in

QCD phase diagram in a magnetized medium from the chiral symmetry perspective: the linear sigma model with quarks and the Nambu–Jona-Lasinio model effective descriptions

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We review the main features of the QCD phase diagram description, at finite temperature, baryon density and in the presence of a magnetic field, from the point of view of effective models, whose main ingredient is chiral symmetry. We concentrate our attention on two of these models: The linear sigma model with quarks and the Nambu–Jona-Lasinio model. We show that a main ingredient to understand the characteristics of the phase transitions is the inclusion of plasma screening effects that capture the physics of collective, long-wave modes, and thus describe a prime property of plasmas near transition lines, namely, long distance correlations. Inclusion of plasma screening makes possible to understand the inverse magnetic catalysis phenomenon even without the need to consider magnetic field-dependent coupling constants. Screening is also responsible for the emergence of a critical end point in the phase diagram even for small magnetic field strengths. Although versatile, the NJL model is also a more limited approach since, being a non-renormalizable model, a clear separation between pure vacuum and medium effects is not always possible. The model cannot describe inverse magnetic catalysis unless a magnetic field dependent coupling is included. The location of the critical end point strongly depends on the choice of the type of interaction and on the magnetic field dependence of the corresponding coupling. Overall, both models provide sensible tools to explore the properties of magnetized, strongly interacting matter. However, a cross talk among them as well as a consistent physical approach to determine the model parameters is much needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Since the paper is basically of a theoretical nature.]

References

  1. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo, The QCD phase diagram for external magnetic fields. JHEP 02, 044 (2012)

    Article  ADS  MATH  Google Scholar 

  2. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, QCD quark condensate in external magnetic fields. Phys. Rev. D 86, 071502 (2012)

    Article  ADS  MATH  Google Scholar 

  3. G.S. Bali, F. Bruckmann, G. Endrödi, S.D. Katz, A. Schäfer, The QCD equation of state in background magnetic fields. JHEP 08, 177 (2014)

    Article  ADS  Google Scholar 

  4. B.P. Abbott et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 119(16), 161101 (2017)

    Article  ADS  Google Scholar 

  5. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, The effects of topological charge change in heavy ion collisions: Event by event P and CP violation. Nucl. Phys. A 803, 227–253 (2008)

    Article  ADS  Google Scholar 

  6. L. McLerran, V. Skokov, Comments about the electromagnetic field in heavy-ion collisions. Nucl. Phys. A 929, 184–190 (2014)

    Article  ADS  Google Scholar 

  7. R.C. Duncan, C. Thompson, Formation of very strongly magnetized neutron stars—implications for gamma-ray bursts. Astrophys. J. 392, L9 (1992)

    Article  ADS  Google Scholar 

  8. P. Esposito, N. Rea, G.L. Israel, Magnetars: a short review and some sparse considerations. Astrophys. Space Sci. Libr. 461, 97–142 (2020)

  9. A. Ayala, D.M.  Paret, A.P. Martínez, G. Piccinelli, A. Sánchez, J.S. Ruíz Montaào, Kicks of magnetized strange quark stars induced by anisotropic emission of neutrinos. Phys. Rev. D 97(10), 103008 (2018)

  10. A. Ayala, S. Bernal–Langarica, S. Hernández–Ortiz, L.A. Hernández, D. Manreza–Paret, Lower bound for the neutrino magnetic moment from kick velocities induced at the birth of neutron stars. Int. J. Mod. Phys. E 30(10), 2150031 (2021)

  11. T. Vachaspati, Magnetic fields from cosmological phase transitions. Phys. Lett. B 265(3), 258–261 (1991)

    Article  ADS  Google Scholar 

  12. J. Navarro, A. Sanchez, M.E. Tejeda-Yeomans, A. Ayala, G. Piccinelli, Symmetry restoration at finite temperature with weak magnetic fields. Phys. Rev. D 82, 123007 (2010)

    Article  ADS  Google Scholar 

  13. A. Sanchez, A. Ayala, G. Piccinelli, Effective potential at finite temperature in a constant hypermagnetic field: ring diagrams in the standard model. Phys. Rev. D 75, 043004 (2007)

    Article  ADS  Google Scholar 

  14. V.V. Skokov, A.Y. Illarionov, V.D. Toneev, Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 24, 5925–5932 (2009)

    Article  ADS  Google Scholar 

  15. K. Tuchin, Electromagnetic field and the chiral magnetic effect in the quark-gluon plasma. Phys. Rev. C 91, 064902 (2015)

    Article  ADS  Google Scholar 

  16. L. Xia, E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Chiral asymmetry in cold qed plasma in a strong magnetic field. Phys. Rev. D 90, 085011 (2014)

    Article  ADS  Google Scholar 

  17. A. Ayala, C.A. Dominguez, L.A. Hernández, M. Loewe, R. Zamora, Magnetized effective qcd phase diagram. Phys. Rev. D 92, 096011 (2015)

    Article  ADS  Google Scholar 

  18. A. Ayala, C.A. Dominguez, L.A. Hernández, M. Loewe, J.C. Rojas, C. Villavicencio, Quark deconfinement and gluon condensate in a weak magnetic field from qcd sum rules. Phys. Rev. D 92, 016006 (2015)

    Article  ADS  Google Scholar 

  19. A. Ayala, J.J. Cobos-Martínez, M. Loewe, M. Tejeda-Yeomans, R. Zamora, Finite temperature quark-gluon vertex with a magnetic field in the hard thermal loop approximation. Phys. Rev. D 91, 016007 (2015)

    Article  ADS  Google Scholar 

  20. A. Ayala, M. Loewe, R. Zamora, Inverse magnetic catalysis in the linear sigma model with quarks. Phys. Rev. D 91, 016002 (2015)

    Article  ADS  Google Scholar 

  21. A. Ayala, L.A. Hernández, A.J. Mizher, J.C. Rojas, C. Villavicencio, Chiral transition with magnetic fields. Phys. Rev. D 89, 116017 (2014)

    Article  ADS  Google Scholar 

  22. M. Loewe, C. Villavicencio, R. Zamora, Linear sigma model and the formation of a charged pion condensate in the presence of an external magnetic field. Phys. Rev. D 89, 016004 (2014)

    Article  ADS  Google Scholar 

  23. A. Ayala, C.A. Dominguez, S. Hernandez-Ortiz, L.A. Hernandez, M. Loewe, D. Manreza Paret, R. Zamora, Thermomagnetic evolution of the QCD strong coupling. Phys. Rev. D 98(3), 031501 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Hagedorn, Ultimate temperature and the structure of elementary particles. Prog. Sci. Cult. 1, 395–411 (1976)

    Google Scholar 

  25. L. McLerran, R.D. Pisarski, Phases of cold, dense quarks at large N(c). Nucl. Phys. A 796, 83–100 (2007)

    Article  ADS  Google Scholar 

  26. A. Bazavov et al., Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B 795, 15–21 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Sharma, The QCD Equation of state and critical end-point estimates at \(\cal{O}(\mu _B^6)\). Nucl. Phys. A 967, 728–731 (2017)

    Article  ADS  Google Scholar 

  28. A. Bazavov et al., The QCD Equation of State to \(\cal{O}(\mu _B^6)\) from Lattice QCD. Phys. Rev. D 95(5), 054504 (2017)

    Article  ADS  Google Scholar 

  29. A. Andronic, P. Braun-Munzinger, J. Stachel, Hadron production in central nucleus-nucleus collisions at chemical freeze-out. Nucl. Phys. A 772, 167–199 (2006)

    Article  ADS  Google Scholar 

  30. P. Braun-Munzinger, J. Stachel, C. Wetterich, Chemical freeze-out and the qcd phase transition temperature. Phys. Lett. B 596(1–2), 61–69 (2004)

    Article  ADS  Google Scholar 

  31. G. Endrodi, Critical point in the QCD phase diagram for extremely strong background magnetic fields. JHEP 07, 173 (2015)

    Article  ADS  Google Scholar 

  32. P. Costa, M. Ferreira, D.P. Menezes, J. Moreira, C. Providência, Influence of the inverse magnetic catalysis and the vector interaction in the location of the critical end point. Phys. Rev. D 92(3), 036012 (2015)

    Article  ADS  Google Scholar 

  33. M. Ferreira, P. Costa, C. Providência, The QCD phase diagram in the presence of an external magnetic field: the role of the inverse magnetic catalysis. New Trends High-Energy Phys. QCD 1, 184–188 (2016)

    Google Scholar 

  34. R.L.S. Farias, K.P. Gomes, G.I. Krein, M.B. Pinto, Importance of asymptotic freedom for the pseudocritical temperature in magnetized quark matter. Phys. Rev. C 90(2), 025203 (2014)

    Article  ADS  Google Scholar 

  35. J.O. Andersen, QCD phase diagram in a constant magnetic background: Inverse magnetic catalysis: where models meet the lattice. Eur. Phys. J. A 57(6), 189 (2021)

  36. A. Bandyopadhyay, R.L.S. Farias, Inverse magnetic catalysis–how much do we know about? Eur. Phys. J. Spec. Top. 8, 1–10 (2021)

    Google Scholar 

  37. G. Krein, C. Miller, Nonequilibrium dynamics of the chiral quark condensate under a strong magnetic field. Symmetry 13(4), 551 (2021)

    Article  Google Scholar 

  38. M. Kawaguchi, S. Matsuzaki, A. Tomiya. A new critical endpoint in thermomagnetic QCD. (2021)

  39. T.K. Herbst, J.M. Pawlowski, B.-J. Schaefer, The phase structure of the Polyakov–quark–meson model beyond mean field. Phys. Lett. B 696, 58–67 (2011)

    Article  ADS  Google Scholar 

  40. J.P. Carlomagno, M. Loewe, Comparison between the continuum threshold and the Polyakov loop as deconfinement order parameters. Phys. Rev. D 95(3), 036003 (2017)

    Article  ADS  Google Scholar 

  41. J.P. Carlomagno, M. Loewe, Relation between the continuum threshold and the Polyakov loop with the QCD deconfinement transition. Phys. Rev. D 100(7), 076022 (2019)

    Article  ADS  Google Scholar 

  42. A.N. Tawfik, A.M. Diab, M.T. Hussein, SU(3) Polyakov linear-sigma model: magnetic properties of QCD matter in thermal and dense medium. J. Exp. Theor. Phys. 126(5), 620–632 (2018)

    Article  ADS  Google Scholar 

  43. L. Dolan, R. Jackiw, Symmetry behavior at finite temperature. Phys. Rev. D 9, 3320–3341 (1974)

    Article  ADS  Google Scholar 

  44. M. Le Bellac, Thermal Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  45. J.I. Kapusta, Finite Temperature Field Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1989)

    MATH  Google Scholar 

  46. A. Ayala, L.A. Hernández, A.J. Mizher, J.C. Rojas, C. Villavicencio, Chiral transition with magnetic fields. Phys. Rev. D 89(11), 116017 (2014)

    Article  ADS  Google Scholar 

  47. A. Ayala, M. Loewe, R. Zamora, Inverse magnetic catalysis in the linear sigma model with quarks. Phys. Rev. D 91(1), 016002 (2015)

    Article  ADS  Google Scholar 

  48. M.E. Carrington, The Effective potential at finite temperature in the Standard Model. Phys. Rev. D 45, 2933–2944 (1992)

    Article  ADS  Google Scholar 

  49. A.J. Mizher, M.N. Chernodub, E.S. Fraga, Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions. Phys. Rev. D 82, 105016 (2010)

    Article  ADS  Google Scholar 

  50. A. Ayala, J.L. Hernández, L.A. Hernández, R.L.S. Farias, R. Zamora, Magnetic field dependence of the neutral pion mass in the linear sigma model with quarks: the strong field case. Phys. Rev. D 103(5), 054038 (2021)

    Article  ADS  Google Scholar 

  51. A. Ayala, M. Loewe, Ana Julia Mizher, R. Zamora, Inverse magnetic catalysis for the chiral transition induced by thermo-magnetic effects on the coupling constant. Phys. Rev. D 90(3), 036001 (2014)

    Article  ADS  Google Scholar 

  52. A. Ayala, L.A. Hernández, M. Loewe, J.C. Rojas, R. Zamora, On the critical end point in a two-flavor linear sigma model coupled to quarks. Eur. Phys. J. A 56(2), 71 (2020)

    Article  ADS  Google Scholar 

  53. A. Ayala, S. Hernandez-Ortiz, L.A. Hernandez, QCD phase diagram from chiral symmetry restoration: analytic approach at high and low temperature using the Linear Sigma Model with Quarks. Rev. Mex. Fis. 64(3), 302–313 (2018)

    Google Scholar 

  54. S. Borsanyi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto, A. Pasztor, C. Ratti, K.K. Szabó, Qcd crossover at finite chemical potential from lattice simulations. Phys. Rev. Lett. 125, 052001 (2020)

    Article  ADS  Google Scholar 

  55. A. Ahmad, A. Martínez, A. Raya, Superstrong coupling NJL model in arbitrary spacetime dimensions. Phys. Rev. D 98(5), 054027 (2018)

    Article  ADS  Google Scholar 

  56. A. Martínez, A. Raya, Solving the gap equation of the NJL model through iteration: unexpected chaos. Symmetry 11(4), 492 (2019)

    Article  MATH  Google Scholar 

  57. D.C. Duarte, P.G. Allen, R.L.S. Farias, P.H.A. Manso, R.O. Ramos, N.N. Scoccola, BEC-BCS crossover in a cold and magnetized two color NJL model. Phys. Rev. D 93(2), 025017 (2016)

    Article  ADS  Google Scholar 

  58. M. Coppola, P. Allen, A.G. Grunfeld, N.N. Scoccola, Magnetized color superconducting quark matter under compact star conditions: phase structure within the SU(2)f NJL model. Phys. Rev. D 96(5), 056013 (2017)

    Article  ADS  Google Scholar 

  59. N. Chaudhuri, S. Ghosh, S. Sarkar, P. Roy, Effects of quark anomalous magnetic moment on the thermodynamical properties and mesonic excitations of magnetized hot and dense matter in PNJL model. Eur. Phys. J. A 56(8), 213 (2020)

    Article  ADS  Google Scholar 

  60. C.A. Islam, A. Bandyopadhyay, P.K. Roy, S. Sarkar, Spectral function and dilepton rate from a strongly magnetized hot and dense medium in light of mean field models. Phys. Rev. D 99(9), 094028 (2019)

    Article  ADS  Google Scholar 

  61. S. Rechenberger, Magnetic-field induced critical endpoint. Phys. Rev. D 95(5), 054013 (2017)

    Article  ADS  Google Scholar 

  62. M. Ferreira, P. Costa, C. Providência, Multiple critical endpoints in magnetized three flavor quark matter. Phys. Rev. D 97(1), 014014 (2018)

    Article  ADS  Google Scholar 

  63. M. Ferreira, P. Costa, C. Providência, Net baryon-number fluctuations in magnetized quark matter. Phys. Rev. D 98(3), 034003 (2018)

    Article  ADS  Google Scholar 

  64. G. Cao, Recent progresses on QCD phases in a strong magnetic field—views from Nambu–Jona-Lasinio model (2021)

  65. M. Buballa, NJL model analysis of quark matter at large density. Phys. Rep. 407, 205–376 (2005)

    Article  ADS  Google Scholar 

  66. A. Ahmad, A. Raya, Inverse magnetic catalysis and confinement within a contact interaction model for quarks. J. Phys. G 43(6), 065002 (2016)

    Article  ADS  Google Scholar 

  67. Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. Phys. Rev. 122, 345–358 (1961)

  68. J.O. Andersen, W.R. Naylor, A. Tranberg, Phase diagram of QCD in a magnetic field: a review. Rev. Mod. Phys. 88, 025001 (2016)

  69. A.M. Polyakov, Thermal properties of Gauge fields and Quark liberation. Phys. Lett. B 72, 477–480 (1978)

    Article  ADS  Google Scholar 

  70. G. Hooft, Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8–11 (1976)

    Article  ADS  Google Scholar 

  71. S. Roessner, C. Ratti, W. Weise, Polyakov loop, diquarks and the two-flavour phase diagram. Phys. Rev. D 75, 034007 (2007)

    Article  ADS  Google Scholar 

  72. T. Hatsuda, T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian. Phys. Rep. 247, 221–367 (1994)

    Article  ADS  Google Scholar 

  73. S.S. Avancini, D.P. Menezes, M.B. Pinto, C. Providencia, The QCD critical end point under strong magnetic fields. Phys. Rev. D 85, 091901 (2012)

    Article  ADS  Google Scholar 

  74. D. Gomez Dumm, J.P. Carlomagno, N.N. Scoccola, Strong-interaction matter under extreme conditions from chiral quark models with nonlocal separable interactions. Symmetry 13(1), 121 (2021)

    Article  Google Scholar 

  75. M.B. Parappilly, P.O. Bowman, U.M. Heller, D.B. Leinweber, A.G. Williams, J.B. Zhang, Scaling behavior of quark propagator in full QCD. Phys. Rev. D 73, 054504 (2006)

    Article  ADS  Google Scholar 

  76. A. Martínez, A. Raya, An innovative approach for sketching the QCD phase diagram within the NJL model using Lagrange Multipliers. e–Print: 1909.12416 [hep–ph]

  77. G.N. Ferrari, A.F. Garcia, M.B. Pinto, Chiral transition within effective quark models under magnetic fields. Phys. Rev. D 86, 096005 (2012)

    Article  ADS  Google Scholar 

  78. F. Marquez, R. Zamora, Critical end point in a thermomagnetic nonlocal NJL model. Int. J. Mod. Phys. A 32(26), 1750162 (2017)

    Article  ADS  Google Scholar 

  79. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Inverse magnetic catalysis in the (2+1)-flavor Nambu–Jona-Lasinio and Polyakov-Nambu–Jona-Lasinio models. Phys. Rev. D 89(11), 116011 (2014)

    Article  ADS  Google Scholar 

  80. A. Ayala, C.A. Dominguez, L.A. Hernandez, M. Loewe, A. Raya, J.C. Rojas, C. Villavicencio, Thermomagnetic properties of the strong coupling in the local Nambu–Jona-Lasinio model. Phys. Rev. D 94(5), 054019 (2016)

    Article  ADS  Google Scholar 

  81. R.L.S. Farias, V.S. Timoteo, S.S. Avancini, M.B. Pinto, G. Krein, Thermo-magnetic effects in quark matter: Nambu–Jona-Lasinio model constrained by lattice QCD. Eur. Phys. J. A 53(5), 101 (2017)

    Article  ADS  Google Scholar 

  82. A. Martínez, A. Raya, Critical chiral hypersurface of the magnetized NJL model. Nucl. Phys. B 934, 317–329 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. K. Fukushima, Phase diagrams in the three-flavor Nambu–Jona-Lasinio model with the Polyakov loop. Phys. Rev. D 77, 114028 (2008)

    Article  ADS  Google Scholar 

  84. A.V. Friesen, Y.L. Kalinovsky, V.D. Toneev, Vector interaction effect on thermodynamics and phase structure of QCD matter. Int. J. Mod. Phys. A 30(16), 1550089 (2015)

    Article  ADS  Google Scholar 

  85. J. Moreira, P. Costa, T.E. Restrepo, Phase diagram for strongly interacting matter in the presence of a magnetic field using the Polyakov–Nambu–Jona-Lasinio model with magnetic field dependent coupling strengths. Eur. Phys. J. A 57(4), 123 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are in debt to G. Endrodi for kindly sharing LQCD results for the critical temperature and condensate as functions of the field strength and to R. L. S. Farias for very useful conversations. The work was supported in part by UNAM-DGAPA-PAPIIT grant number IG100219 and by Consejo Nacional de Ciencia y Tecnología grant numbers A1-S-7655 and A1-S-16215. M. L. acknowledges support from Fondecyt (Chile) regular grants No. 1200483 and No. 1190192 and from ANID/PIA/Basal (Chile) under grant FB082. C.V. acknowledges financial support from FONDECYT under grants 1190192 and 1200483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Ayala.

Additional information

Communicated by Carsten Urbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala, A., Hernández, L.A., Loewe, M. et al. QCD phase diagram in a magnetized medium from the chiral symmetry perspective: the linear sigma model with quarks and the Nambu–Jona-Lasinio model effective descriptions. Eur. Phys. J. A 57, 234 (2021). https://doi.org/10.1140/epja/s10050-021-00534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00534-4

Navigation