Skip to main content
Log in

Unified description of the coupled-channels and statistical Hauser-Feshbach nuclear reaction theories for low energy neutron incident reactions

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We incorporate the coupled-channels optical model into the statistical Hauser-Feshbach nuclear reaction theory, where the scattering matrix is diagonalized by performing the Engelbrecht-Weidenmüller transformation. This technique has been implemented in the coupled-channels optical model code ECIS by J. Raynal, and we extend this method so that all the open channels in a nucleon-induced reaction on a deformed nucleus can be calculated consistently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This work is theoretical, and all the relevant equations are given in the article.]

References

  1. P.A. Moldauer, Phys. Rev. 123, 968 (1961)

    Article  ADS  Google Scholar 

  2. P.A. Moldauer, Phys. Rev. 135, B642 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Kawai, A.K. Kerman, K.W. McVoy, Ann. Phys. 75, 156 (1973)

    Article  ADS  Google Scholar 

  4. H.M. Hofmann, J. Richert, J.W. Tepel, H.A. Weidenmüller, Ann. Phys. 90, 403 (1975)

    Article  ADS  Google Scholar 

  5. P.A. Moldauer, Nucl. Phys. A 344, 185 (1980)

    Article  ADS  Google Scholar 

  6. J.J.M. Verbaarschot, H.A. Weidenmüller, M.R. Zirnbauer, Phys. Rep. 129, 367 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Kawano, P. Talou, H.A. Weidenmüller, Phys. Rev. C 92, 044617 (2015)

    Article  ADS  Google Scholar 

  8. J. Raynal, ICTP International Seminar Course: Computing as a language of physics, Trieste, Italy, August 2 – 20 1971, IAEA-SMR-9/8, International Atomic Energy Agency (1972)

  9. S.i. Igarasi, JAERI-1224, Japan Atomic Energy Research Institute (1972)

  10. S.i. Igarasi, T. Fukahori, JAERI-1321, Japan Atomic Energy Research Institute (1991)

  11. R. Lawson, A. Smith, ANL/NDM-145, Argonne National Laboratory (1999)

  12. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  13. P.G. Young, E.D. Arthur, LA-6947, Los Alamos National Laboratory (1977)

  14. P.G. Young, E.D. Arthur, M.B. Chadwick, LA-12343-MS, Los Alamos National Laboratory (1992)

  15. C.Y. Fu, ORNL/TM-7042, Oak Ridge National Laboratory (1980)

  16. M. Uhl, B. Strohmaier, IRK-76/01, Institut für Radiumforschung und Kernphysik (IRK), Universität Wien (1976)

  17. M. Herman, R. Capote, M. Sin, A. Trkov, B.V. Carlson, P. Obložinský, C.M. Mattoon, H. Wienke, S. Hoblit, Y.S. Cho, G.P.A. Nobre, V.A. Plujko, V. Zerkin, INDC(NDS)-0603, International Atomic Energy Agency (2013)

  18. A.J. Koning, M.C. Duijvestijn, Nucl. Phys. A 744, 15 (2004)

    Article  ADS  Google Scholar 

  19. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  20. O. Iwamoto, J. Nucl. Sci. Technol. 44, 687 (2007)

    Article  MathSciNet  Google Scholar 

  21. O. Iwamoto, J. Nucl. Sci. Technol. 50, 409 (2013)

    Article  Google Scholar 

  22. T. Kawano, P. Talou, M.B. Chadwick, T. Watanabe, J. Nucl. Sci. Technol. 47, 462 (2010)

    Article  Google Scholar 

  23. T. Kawano, Proc. CNR2018: International Workshop on Compound Nucleus and Related Topics, LBNL, Berkeley, CA, USA, September 24 – 28, 2018, ed. by J. Escher, to be published

  24. T. Tamura, Rev. Mod. Phys. 37, 679 (1965)

    Article  ADS  Google Scholar 

  25. C.A. Engelbrecht, H.A. Weidenmüller, Phys. Rev. C 8, 859 (1973)

    Article  ADS  Google Scholar 

  26. P.A. Moldauer, Phys. Rev. C 12, 744 (1975)

    Article  ADS  Google Scholar 

  27. T. Kawano, Nucl. Sci. Eng. 131, 107 (1999)

    Article  Google Scholar 

  28. P.A. Moldauer, Phys. Rev. C 11, 426 (1975)

    Article  ADS  Google Scholar 

  29. P.A. Moldauer, Phys. Rev. C 14, 764 (1976)

    Article  ADS  Google Scholar 

  30. T. Kawano, P. Talou, J.E. Lynn, M.B. Chadwick, D.G. Madland, Phys. Rev. C 80, 024611 (2009)

    Article  ADS  Google Scholar 

  31. E.S. Soukhovitskii, S. Chiba, J.Y. Lee, O. Iwamoto, T. Fukahori, J. Phys. G: Nucl. Part. Phys. 30, 905 (2004)

    Article  ADS  Google Scholar 

  32. S. Kunieda, S. Chiba, K. Shibata, A. Ichihara, E.S. Sukhovitskii, J. Nucl. Sci. Technol. 44, 838 (2007)

    Article  Google Scholar 

  33. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohsawa, T. Murata, H. Matsunobu, A. Zukeran, S. Kamada, J. Katakura, J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  34. R. Capote, S. Hilaire, O. Iwamoto, T. Kawano, M. Sin, Proc. ND 2016: Int. Conf. on Nuclear Data for Science and Technology, 11 – 16 Sep., 2016, Bruges, Belgium, Eds. by A. Plompen, F.-J. Hambsch, P. Schillebeeckx, W. Mondelaers, J. Heyse, S. Kopecky, P. Siegler and S. Oberstedt, EPJ Web of Conferences 146, 12034 (2017)

  35. A.J. Koning, S. Hilaire, M.C. Duijvestijn, Proc. Int. Conf. on Nuclear Data for Science and Technology, 22 – 27 Apr., 2007, Nice, France, Eds. by O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin, and S. Leray, EDP Sciences, p.211 (2008)

  36. O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, K. Shibata, Nucl. Data Sheets 131, 259 (2016)

    Article  ADS  Google Scholar 

  37. S. Goriely, P. Dimitriou, M. Wiedeking, T. Belgya, R. Firestone, J. Kopecky, M. Krtička, V. Plujko, R. Schwengner, S. Siem, H. Utsunomiya, S. Hilaire, S. Péru, Y.S. Cho, D.M. Filipescu, N. Iwamoto, T. Kawano, V. Varlamov, R. Xu, Eur. Phys. J. A 55, 172 (2019)

    Article  ADS  Google Scholar 

  38. T. Kawano, Y. Cho, P. Dimitriou, D. Filipescu, N. Iwamoto, V. Plujko, X. Tao, H. Utsunomiya, V. Varlamov, R. Xu, R. Capote, I. Gheorghe, O. Gorbachenko, Y.L. Jin, T. Renstrøm, M. Sin, K. Stopani, Y. Tian, G.M. Tveten, J.M. Wang, T. Belgya, R. Firestone, S. Goriely, J. Kopecky, M. Krtička, R. Schwengner, S. Siem, M. Wiedeking, Nucl. Data Sheets 163, 109 (2020)

    Article  ADS  Google Scholar 

  39. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)

    Article  ADS  Google Scholar 

  40. S. Hilaire, C. Lagrange, A.J. Koning, Ann. Phys. 306, 209 (2003)

    Article  ADS  Google Scholar 

  41. G.R. Satchler, Phys. Lett. 7, 55 (1963)

    Article  ADS  Google Scholar 

  42. T. Kawano, R. Capote, S. Hilaire, P. Chau Huu-Tai, Phys. Rev. C 94, 014612 (2016)

    Article  ADS  Google Scholar 

  43. T. Miura, M. Baba, M. Ibaraki, T. Sanami, T. Win, Y. Hirasawa, S. Matsuyama, N. Hirakawa, Ann. Nucl. Energy 27, 625 (2000)

    Article  Google Scholar 

  44. N. Kornilov, A. Kagalenko, Nucl. Sci. Eng. 120, 55 (1995)

    Article  Google Scholar 

  45. M. Moxon, J. Wartena, H. Weigmann, G. Vanpraet, Proc. Int. Conf. Nuclear Data for Science and Technology, 9–13 May, 1994, Gatlinburg, U.S.A., Ed. J. K. Dickens, American Nuclear Society, p. 981 (1994)

  46. L. Litvinskii, A. Murzin, G. Novoselov, O. Purtov, Yadernye Konstanty 52, 1025 (1990)

    Google Scholar 

  47. R.R. Winters, N.W. Hill, R.L. Macklin, J.A. Harvey, D.K. Olsen, G.L. Morgan, Nucl. Sci. Eng. 78, 147 (1981)

    Article  Google Scholar 

  48. P.A. Moldauer, D. Havel, A. Smith, ANL/NDM-16, Argonne National Laboratory (1975)

  49. G. Haouat, J. Lachkar, C. Lagrange, J. Jary, J. Sigaud, Y. Patin, Nucl. Sci. Eng. 81, 491 (1982)

    Article  Google Scholar 

  50. F.Y. Tsang, R.M. Brugger, Nucl. Sci. Eng. 65, 70 (1978)

    Article  Google Scholar 

  51. E.S. Soukhovitskii, R. Capote, J.M. Quesada, S. Chiba, Phys. Rev. C 72, 024604 (2005)

    Article  ADS  Google Scholar 

  52. F.S. Dietrich, I.J. Thompson, T. Kawano, Phys. Rev. C 85, 044611 (2012)

    Article  ADS  Google Scholar 

  53. J.M. Blatt, L.C. Biedenharn, Rev. Mod. Phys. 24, 258 (1952)

    Article  ADS  Google Scholar 

  54. H.I. Kim, H.Y. Lee, T. Kawano, A. Georgiadou, S. Kuvin, L. Zavorka, M. Herman, Nucl. Instrum. Meth. A 963, 163699 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to E. Bauge, S. Hilaire, and P. Chau of CEA Bruyères-le-Châtel and P. Talou of LANL for encouraging this work. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. 89233218CNA000001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Kawano.

Additional information

Communicated by Nicolas Alamanos.

This article belongs to the Special Issue on: “Nuclear Reaction Studies: a Tribute to Jacques Raynal”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawano, T. Unified description of the coupled-channels and statistical Hauser-Feshbach nuclear reaction theories for low energy neutron incident reactions. Eur. Phys. J. A 57, 16 (2021). https://doi.org/10.1140/epja/s10050-020-00311-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00311-9

Navigation