Skip to main content
Log in

Production of light nuclei at thermal freezeout in ultrarelativistic heavy-ion collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We revisit the problem of the production of light atomic nuclei in ultrarelativistic heavy-ion collisions. While their production systematics is well produced by hadro-chemical freezeout at temperatures near the QCD pseudo-critical temperature, their small binding energies of a few MeV per nucleon suggest that they cannot survive as bound states under these conditions. Here, we adopt the concept of effective chemical potentials in the hadronic evolution from chemical to thermal freezeout (at typically \( T_{\mathrm{fo}} \simeq 100\) MeV), which, despite frequent elastic rescatterings in hadronic matter, conserves the effective numbers of particles which are stable under strong interactions, most notably pions, kaons and nucleons. It turns out that the large chemical potentials that build up for antibaryons result in thermal abundances of light nuclei and antinuclei, formed at thermal freezeout, which essentially agree with the ones evaluated at chemical freezeout. Together with their transverse-momentum spectra, which also indicate a kinetic freezeout near \( T_{\mathrm{fo}}\) , this provides a natural explanation for their production systematics without postulating their survival at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)

    Article  Google Scholar 

  2. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044910 (2013)

    Article  ADS  Google Scholar 

  3. F. Bellini, A.P. Kalweit, arXiv:1807.05894 [hep-ph]

  4. J. Chen, D. Keane, Y.G. Ma, A. Tang, Z. Xu, Phys. Rep. 760, 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stocker, Phys. Lett. B 697, 203 (2011)

    Article  ADS  Google Scholar 

  6. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, J. Phys.: Conf. Ser. 779, 012012 (2017)

    Google Scholar 

  7. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nature 561, 321 (2018)

    Article  ADS  Google Scholar 

  8. J.I. Kapusta, Phys. Rev. C 21, 1301 (1980)

    Article  ADS  Google Scholar 

  9. R. Scheibl, U.W. Heinz, Phys. Rev. C 59, 1585 (1999)

    Article  ADS  Google Scholar 

  10. L. Zhu, C.M. Ko, X. Yin, Phys. Rev. C 92, 064911 (2015)

    Article  ADS  Google Scholar 

  11. S. Bazak, S. Mrowczynski, Mod. Phys. Lett. A 33, 1850142 (2018)

    Article  ADS  Google Scholar 

  12. P. Danielewicz, P. Schuck, Phys. Lett. B 274, 268 (1992)

    Article  ADS  Google Scholar 

  13. S. Mrowczynski, J. Phys. G 13, 1089 (1987)

    Article  ADS  Google Scholar 

  14. P. Braun-Munzinger, K. Redlich, J. Stachel, in Quark Gluon Plasma, Vol. 3, edited by R.C. Hwa, X.-N. Wang (World Scientific, Singapore, 2004) pp. 491--599

  15. F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C 73, 044905 (2006)

    Article  ADS  Google Scholar 

  16. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)

    Article  ADS  Google Scholar 

  17. A. Andronic, P. Braun-Munzinger, J. Stachel, Phys. Lett. B 673, 142 (2009) 678

    Article  ADS  Google Scholar 

  18. H. Bebie, P. Gerber, J.L. Goity, H. Leutwyler, Nucl. Phys. B 378, 95 (1992)

    Article  ADS  Google Scholar 

  19. C.M. Hung, E. Shuryak, Phys. Rev. C 57, 1891 (1998)

    Article  ADS  Google Scholar 

  20. R. Rapp, Phys. Rev. C 66, 017901 (2002)

    Article  ADS  Google Scholar 

  21. D. Teaney, nucl-th/0204023

  22. T. Hirano, K. Tsuda, Phys. Rev. C 66, 054905 (2002)

    Article  ADS  Google Scholar 

  23. R. Rapp, E.V. Shuryak, Phys. Rev. Lett. 86, 2980 (2001)

    Article  ADS  Google Scholar 

  24. G.D. Yen, M.I. Gorenstein, W. Greiner, S.N. Yang, Phys. Rev. C 56, 2210 (1997)

    Article  ADS  Google Scholar 

  25. S. Typel, G. Ropke, T. Klahn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010)

    Article  ADS  Google Scholar 

  26. R. Rapp, Adv. High Energy Phys. 2013, 148253 (2013)

    Article  Google Scholar 

  27. STAR Collaboration (B.I. Abelev), arXiv:0909.0566 [nucl-ex]

  28. STAR Collaboration (H. Agakishiev et al.), Nature 473, 353 (2011) 475

    Article  ADS  Google Scholar 

  29. STAR Collaboration (N. Yu), Nucl. Phys. A 967, 788 (2017)

    Article  ADS  Google Scholar 

  30. STAR Collaboration (P. Liu), Nucl. Phys. A 982, 811 (2019)

    Article  ADS  Google Scholar 

  31. S. Chatterjee, B. Mohanty, Phys. Rev. C 90, 034908 (2014)

    Article  ADS  Google Scholar 

  32. ALICE Collaboration (J. Adam et al.), Phys. Rev. C 93, 024917 (2016)

    Article  ADS  Google Scholar 

  33. ALICE Collaboration (S. Acharya et al.), Nucl. Phys. A 971, 1 (2018)

    Article  ADS  Google Scholar 

  34. B. Dönigus, private communication (2019)

  35. E. Schnedermann, J. Sollfrank, U.W. Heinz, Phys. Rev. C 48, 2462 (1993)

    Article  ADS  Google Scholar 

  36. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 94, 034908 (2016)

    Article  ADS  Google Scholar 

  37. ALICE Collaboration (M. Puccio), Nucl. Phys. A 982, 447 (2019)

    Article  ADS  Google Scholar 

  38. L. Ravagli, R. Rapp, Phys. Lett. B 655, 126 (2007)

    Article  ADS  Google Scholar 

  39. D. Oliinychenko, L.G. Pang, H. Elfner, V. Koch, arXiv:1809.03071 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Rapp.

Additional information

Communicated by D. Blaschke

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data generated during this study are contained in this published article and available upon request as numerical data files.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Rapp, R. Production of light nuclei at thermal freezeout in ultrarelativistic heavy-ion collisions. Eur. Phys. J. A 55, 68 (2019). https://doi.org/10.1140/epja/i2019-12757-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12757-7

Navigation