Skip to main content
Log in

Efimov universality with Coulomb interaction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The universal properties of charged particles are modified by the presence of a long-range Coulomb interaction. We investigate the modification of Efimov universality as a function of the Coulomb strength using the Gaussian Expansion Method. The resonant short-range interaction is described by Gaussian potentials to which a Coulomb potential is added. We calculate binding energies and root mean square radii for the three- and four-body systems of charged particles and present our results in a generalised Efimov plot. We find that universal features can still be discerned for weak Coulomb interaction, but break down for strong Coulomb interaction. The maximum root mean square radius of the system decreases as the strength of the Coulomb interaction is increased and the probability distributions of the states become more concentrated inside the Coulomb barrier. As an example, we apply our universal model to nuclei with an \( \alpha\) cluster substructure. Our results point to strong non-universal contributions in that sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Efimov, Phys. Lett. B 33, 563 (1970)

    Article  ADS  Google Scholar 

  2. E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006) arXiv:cond-mat/0410417v3 [cond-mat.other]

    Article  ADS  MathSciNet  Google Scholar 

  3. A.C. Phillips, Nucl. Phys. A 107, 209 (1968)

    Article  ADS  Google Scholar 

  4. J.A. Tjon, Phys. Lett. B 56, 217 (1975)

    Article  ADS  Google Scholar 

  5. E. Braaten, H.-W. Hammer, M. Kusunoki, Phys. Rev. A 67, 022505 (2003) arXiv:cond-mat/0201281

    Article  ADS  Google Scholar 

  6. L. Platter, H.-W. Hammer, U.-G. Meißner, Phys. Rev. A 70, 052101 (2004) arXiv:cond-mat/0404313

    Article  ADS  Google Scholar 

  7. H.W. Hammer, L. Platter, Eur. Phys. J. A 32, 113 (2007) arXiv:nucl-th/0610105 [nucl-th]

    Article  ADS  Google Scholar 

  8. J. von Stecher, J.P. D'Incao, C.H. Greene, Nat. Phys. 5, 417 (2009)

    Article  Google Scholar 

  9. A. Deltuva, Phys. Rev. A 82, 040701 (2010) arXiv:1009.1295 [physics.atm-clus]

    Article  ADS  Google Scholar 

  10. A. Deltuva, Few Body Syst. 54, 569 (2013) arXiv:1202.0167v1 [physics.atom-ph]

    Article  ADS  Google Scholar 

  11. J. von Stecher, Phys. Rev. Lett. 107, 200402 (2011) arXiv:1106.2319 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  12. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 86, 042513 (2012) arXiv:1206.0854 [physics.atm-clus]

    Article  ADS  Google Scholar 

  13. A. Kievsky, N.K. Timofeyuk, M. Gattobigio, Phys. Rev. A 90, 032504 (2014) arXiv:1405.2371 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  14. B. Bazak, M. Eliyahu, U. van Kolck, Phys. Rev. A 94, 052502 (2016) arXiv:1607.01509 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  15. P. Naidon, S. Endo, Rep. Prog. Phys. 80, 056001 (2017) arXiv:1610.09805 [quant-ph]

    Article  ADS  Google Scholar 

  16. F. Ferlaino, R. Grimm, Physics 3, 9 (2010)

    Article  Google Scholar 

  17. A. Zenesini, B. Huang, M. Berninger, S. Besler, H.-C. Nägerl, F. Ferlaino, R. Grimm, C.H. Greene, J. von Stecher, New J. Phys. 15, 043040 (2013) arXiv:1205.1921 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  18. A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004)

    Article  ADS  Google Scholar 

  19. H.-W. Hammer, L. Platter, Annu. Rev. Nucl. Part. Sci. 60, 207 (2010) arXiv:1001.1981 [nucl-th]

    Article  ADS  Google Scholar 

  20. H.-W. Hammer, C. Ji, D.R. Phillips, J. Phys. G 44, 103002 (2017) arXiv:1702.08605 [nucl-th]

    Article  ADS  Google Scholar 

  21. V. Efimov, Comments Nucl. Part. Phys. 19, 271 (1990)

    Google Scholar 

  22. T. Barford, M.C. Birse, Phys. Rev. C 67, 064006 (2003) arXiv:hep-ph/0206146

    Article  ADS  Google Scholar 

  23. H.-W. Hammer, R. Higa, Eur. Phys. J. A 37, 193 (2008) arXiv:0804.4643 [nucl-th]

    Article  ADS  Google Scholar 

  24. D.V. Fedorov, A.S. Jensen, K. Riisager, Phys. Rev. C 49, 201 (1994)

    Article  ADS  Google Scholar 

  25. S.-I. Ando, M.C. Birse, J. Phys. G 37, 105108 (2010) arXiv:1003.4383 [nucl-th]

    Article  ADS  Google Scholar 

  26. S. König, H.-W. Hammer, Phys. Rev. C 83, 064001 (2011) arXiv:1101.5939 [nucl-th]

    Article  ADS  Google Scholar 

  27. J. Vanasse, D.A. Egolf, J. Kerin, S. König, R.P. Springer, Phys. Rev. C 89, 064003 (2014) arXiv:1402.5441 [nucl-th]

    Article  ADS  Google Scholar 

  28. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, J. Phys. G 43, 055106 (2016) arXiv:1508.05085 [nucl-th]

    Article  ADS  Google Scholar 

  29. S. König, H.W. Grießhammer, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 118, 202501 (2017) arXiv:1607.04623 [nucl-th]

    Article  ADS  Google Scholar 

  30. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    Article  ADS  Google Scholar 

  31. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 53, 2075 (1996)

    Article  ADS  Google Scholar 

  32. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Prog. Theor. Phys. 97, 881 (1997)

    Article  ADS  Google Scholar 

  33. E. Hiyama, M. Kamimura, K. Miyazaki, T. Motoba, Phys. Rev. C 59, 2351 (1999)

    Article  ADS  Google Scholar 

  34. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 65, 011301 (2002) arXiv:nucl-th/0106070

    Article  ADS  Google Scholar 

  35. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 66, 024007 (2002) arXiv:nucl-th/0204059

    Article  ADS  Google Scholar 

  36. E. Hiyama, M. Kamimura, Y. Yamamoto, T. Motoba, Phys. Rev. Lett. 104, 212502 (2010) arXiv:1006.2626 [nucl-th]

    Article  ADS  Google Scholar 

  37. E. Hiyama, M. Kamimura, Phys. Rev. A 85, 022502 (2012) arXiv:1111.4370 [physics.atom-ph]

    Article  ADS  Google Scholar 

  38. E. Hiyama, M. Kamimura, Phys. Rev. A 85, 062505 (2012) arXiv:1203.3130 [physics.atom-ph]

    Article  ADS  Google Scholar 

  39. E. Hiyama, M. Kamimura, Phys. Rev. A 90, 052514 (2014) arXiv:1409.2501 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  40. C.H. Schmickler, H.W. Hammer, A.G. Volosniev, arXiv:1904.00913 [nucl-th] (2019)

  41. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. A 84, 052503 (2011) arXiv:1106.3853v2 [physics.atm-clus]

    Article  ADS  Google Scholar 

  42. D. Blume, Y. Yan, Phys. Rev. Lett. 113, 213201 (2014) arXiv:1410.2314 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  43. C.H. Schmickler, H.-W. Hammer, E. Hiyama, Phys. Rev. A 95, 052710 (2017) arXiv:1703.01147 [cond-mat.quant-gas]

    Article  ADS  Google Scholar 

  44. S. König, Effective quantum theories with short- and long-range forces, PhD Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn (2013)

  45. H.A. Bethe, Phys. Rev. 76, 38 (1949)

    Article  ADS  Google Scholar 

  46. H. van Haeringen, L.P. Kok, Phys. Rev. A 26, 1218 (1982)

    Article  ADS  Google Scholar 

  47. A. Deltuva, Phys. Rev. A 85, 012708 (2012) arXiv:1201.2326v1 [physics.atom-ph]

    Article  ADS  Google Scholar 

  48. D.V. Fedorov, A.S. Jensen, Phys. Lett. B 389, 631 (1996) arXiv:nucl-th/9608028

    Article  ADS  Google Scholar 

  49. C.H. Schmickler, arXiv:1812.01730 [nucl-th] (2018)

  50. D.R. Tilley, H.R. Weller, C.M. Cheves, Nucl. Phys. A 564, 1 (1993)

    Article  ADS  Google Scholar 

  51. R. Higa, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 809, 171 (2008) arXiv:0802.3426 [nucl-th]

    Article  ADS  Google Scholar 

  52. J.H. Kelley, J.E. Purcell, C.G. Sheu, Nucl. Phys. A 968, 71 (2017)

    Article  ADS  Google Scholar 

  53. D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller, Nucl. Phys. A 745, 155 (2004)

    Article  ADS  Google Scholar 

  54. D. Mathur, L.H. Andersen, P. Hvelplund, D. Kella, C.P. Safvan, J. Phys. B 28, 3415 (1995)

    Article  ADS  Google Scholar 

  55. B. Hattendorf, B. Gusmini, L. Dorta, R.S. Houk, D. Günther, ChemPhysChem 17, 2640 (2016)

    Article  Google Scholar 

  56. M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L.P.H. Schmidt, M. Schöffler, A. Czasch, W. Schöllkopf, R.E. Grisenti, T. Jahnke, D. Blume, R. Dörner, Science 348, 551 (2015) arXiv:1512.02036 [physics.atm-clus]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Schmickler.

Additional information

Communicated by T. Duguet

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors' comment: All data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmickler, C.H., Hammer, H.W. & Hiyama, E. Efimov universality with Coulomb interaction. Eur. Phys. J. A 55, 85 (2019). https://doi.org/10.1140/epja/i2019-12756-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12756-8

Navigation