Skip to main content
Log in

Heavy quark fragmentation function in the noncommutative Standard Model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The dominant mechanism to produce hadronic bound states with large transverse momentum is fragmentation. The hadronization processes are described by the fragmentation functions (FFs) which are universal and process-independent functions. In this paper, we study for the first time the noncommutative effects to the FF of a heavy quark to fragment into heavy mesons to leading order in the QCD coupling constant. As an example, we focus on the FF of a charm quark to split into the S-wave D-meson and compare our analytical results with both the experimental data and a well-known phenomenological model. Here, we compute the corrections of FFs induced by noncommutativity and find a bound on the energy scale where the noncommutative effects of the space-time will be relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Braaten, M.A. Doncheski, S. Fleming, M.L. Mangano, Phys. Lett. B 333, 548 (1994)

    Article  ADS  Google Scholar 

  2. M. Suzuki, Phys. Lett. B 71, 139 (1977)

    Article  ADS  Google Scholar 

  3. S.M.M. Nejad, M. Delpasand, Int. J. Mod. Phys. A 30, 1550179 (2015)

    Article  ADS  Google Scholar 

  4. H. Khanpour, S.T. Monfared, S. Atashbar Tehrani, Phys. Rev. D 96, 074037 (2017)

    Article  ADS  Google Scholar 

  5. S.M. Moosavi Nejad, H. Khanpour, S. Atashbar Tehrani, M. Mahdavi, Phys. Rev. C 94, 045201 (2016)

    Article  ADS  Google Scholar 

  6. H. Khanpour, S.T. Monfared, S. Atashbar Tehrani, Phys. Rev. D 95, 074006 (2017)

    Article  ADS  Google Scholar 

  7. M. Goharipour, H. Khanpour, V. Guzey, Eur. Phys. J. C 78, 309 (2018)

    Article  ADS  Google Scholar 

  8. M. Hirai, S. Kumano, Prog. Theor. Phys. Suppl. 186, 244 (2010)

    Article  ADS  Google Scholar 

  9. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972) Yad. Fiz. 15

    Google Scholar 

  10. T. Kneesch, B.A. Kniehl, G. Kramer, I. Schienbein, Nucl. Phys. B 799, 34 (2008)

    Article  ADS  Google Scholar 

  11. M. Soleymaninia, A.N. Khorramian, S.M. Moosavi Nejad, F. Arbabifar, Phys. Rev. D 88, 054019 (2013) 89

    Article  ADS  Google Scholar 

  12. Studies on fragmentation functions are listed in https://doi.org/www.pv.infn.it/radici/FFdatabase/

  13. S. Albino, B.A. Kniehl, G. Kramer, Nucl. Phys. B 725, 181 (2005)

    Article  ADS  Google Scholar 

  14. B.A. Kniehl, G. Kramer, B. Potter, Nucl. Phys. B 582, 514 (2000)

    Article  ADS  Google Scholar 

  15. P. Nason, C. Oleari, Nucl. Phys. B 565, 245 (2000)

    Article  ADS  Google Scholar 

  16. M. Cacciari, P. Nason, C. Oleari, JHEP 04, 006 (2006)

    Article  ADS  Google Scholar 

  17. J.C. Collins, Phys. Rev. D 58, 094002 (1998)

    Article  ADS  Google Scholar 

  18. C. Peterson, D. Schlatter, I. Schmitt, P.M. Zerwas, Phys. Rev. D 27, 105 (1983)

    Article  ADS  Google Scholar 

  19. B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97, 31 (1983)

    Article  ADS  Google Scholar 

  20. B.R. Webber, Nucl. Phys. B 238, 492 (1984)

    Article  ADS  Google Scholar 

  21. J.P. Ma, Nucl. Phys. B 506, 329 (1997)

    Article  ADS  Google Scholar 

  22. E. Braaten, T.C. Yuan, Phys. Rev. Lett. 71, 1673 (1993)

    Article  ADS  Google Scholar 

  23. C.-H. Chang, Y.-Q. Chen, Phys. Lett. B 284, 127 (1992)

    Article  ADS  Google Scholar 

  24. E. Braaten, K.-m. Cheung, T.C. Yuan, Phys. Rev. D 48, 4230 (1993)

    Article  ADS  Google Scholar 

  25. D.M. Scott, Phys. Rev. D 18, 210 (1978)

    Article  ADS  Google Scholar 

  26. J.D. Bjorken, Phys. Rev. D 17, 171 (1978)

    Article  ADS  Google Scholar 

  27. F. Amiri, C.-R. Ji, Phys. Lett. B 195, 593 (1987)

    Article  ADS  Google Scholar 

  28. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  29. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phys. Rev. D 59, 086004 (1999)

    Article  ADS  Google Scholar 

  30. J.D. Lykken, Phys. Rev. D 54, R3693 (1996)

    Article  ADS  Google Scholar 

  31. M. Soleymaninia, H. Khanpour, S.M. Moosavi Nejad, Phys. Rev. D 97, 074014 (2018)

    Article  ADS  Google Scholar 

  32. M.G. Bowler, Z. Phys. C 11, 169 (1981)

    Article  ADS  Google Scholar 

  33. M. Suzuki, Phys. Rev. D 33, 676 (1986)

    Article  ADS  Google Scholar 

  34. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  35. A.D. Adamov, G.R. Goldstein, Phys. Rev. D 56, 7381 (1997)

    Article  ADS  Google Scholar 

  36. S.J. Brodsky, C.-R. Ji, Phys. Rev. Lett. 55, 2257 (1985)

    Article  ADS  Google Scholar 

  37. F. Amiri, B.C. Harms, C.-R. Ji, Phys. Rev. D 32, 2982 (1985)

    Article  ADS  Google Scholar 

  38. Particle Data Group (C. Patrignani et al.), Chin. Phys. C 40, 100001 (2016)

    Article  ADS  Google Scholar 

  39. M.R. Douglas, C.M. Hull, JHEP 02, 008 (1998)

    Article  ADS  Google Scholar 

  40. N. Mahajan, Phys. Rev. D 68, 095001 (2003)

    Article  ADS  Google Scholar 

  41. Z. Rezaei, R. Salehi, arXiv:1804.07688 [hep-ph]

  42. S.M. Moosavi Nejad, Phys. Rev. D 88, 094011 (2013)

    Article  ADS  Google Scholar 

  43. A. Alboteanu, T. Ohl, R. Ruckl, Phys. Rev. D 74, 096004 (2006)

    Article  ADS  Google Scholar 

  44. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)

    Article  ADS  Google Scholar 

  45. J. Madore, S. Schraml, P. Schupp, J. Wess, Eur. Phys. J. C 16, 161 (2000)

    Article  ADS  Google Scholar 

  46. B. Jurco, P. Schupp, J. Wess, Nucl. Phys. B 604, 148 (2001)

    Article  ADS  Google Scholar 

  47. J.L. Hewett, F.J. Petriello, T.G. Rizzo, Phys. Rev. D 64, 075012 (2001)

    Article  ADS  Google Scholar 

  48. I. Hinchliffe, N. Kersting, Phys. Rev. D 64, 116007 (2001)

    Article  ADS  Google Scholar 

  49. M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu, Phys. Rev. Lett. 86, 2716 (2001)

    Article  ADS  Google Scholar 

  50. S.M. Carroll, J.A. Harvey, V.A. Kostelecky, C.D. Lane, T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  51. B. Melic, K. Passek-Kumericki, J. Trampetic, P. Schupp, M. Wohlgenannt, Eur. Phys. J. C 42, 483 (2005)

    Article  ADS  Google Scholar 

  52. C.E. Carlson, C.D. Carone, R.F. Lebed, Phys. Lett. B 518, 201 (2001)

    Article  ADS  Google Scholar 

  53. N. Seiberg, E. Witten, JHEP 09, 032 (1999)

    Article  ADS  Google Scholar 

  54. J. Gomis, T. Mehen, Nucl. Phys. B 591, 265 (2000)

    Article  ADS  Google Scholar 

  55. Belle Collaboration (R. Seuster et al.), Phys. Rev. D 73, 032002 (2006)

    Article  Google Scholar 

  56. CLEO Collaboration (M. Artuso et al.), Phys. Rev. D 70, 112001 (2004)

    Article  Google Scholar 

  57. M.A. Gomshi Nobary, J. Phys. G 20, 65 (1994)

    Article  ADS  Google Scholar 

  58. S.M. Moosavi Nejad, Phys. Rev. D 96, 114021 (2017)

    Article  ADS  Google Scholar 

  59. S.M. Moosavi Nejad, M. Delpasand, Eur. Phys. J. A 53, 174 (2017)

    Article  ADS  Google Scholar 

  60. S.M. Moosavi Nejad, P. Sartipi Yarahmadi, Eur. Phys. J. A 52, 315 (2016)

    Article  ADS  Google Scholar 

  61. S.M. Moosavi Nejad, Eur. Phys. J. Plus 130, 136 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Moosavi Nejad.

Additional information

Communicated by R. Sharma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moosavi Nejad, S.M., Tajik, E. Heavy quark fragmentation function in the noncommutative Standard Model. Eur. Phys. J. A 54, 174 (2018). https://doi.org/10.1140/epja/i2018-12605-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12605-4

Navigation