Skip to main content

Advertisement

Log in

Classifications of twin star solutions for a constant speed of sound parameterized equation of state

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We explore the possible mass radius relation of compact stars for the equation of states with a first order phase transition. The low density matter is described by a nuclear matter equation of state resulting from fits to nuclear properties. A constant speed of sound parametrization is used to describe the high density matter phase with the speed of sound \(c_{s}^{2} = 1\). A classification scheme of four distinct categories including twin star solutions, i.e. solutions with the same mass but differing radii, is found which is compatible with the \(M \ge 2M_{\odot}\) pulsar mass constraint. We show the dependence of the mass and radius differences on the transition parameters and delineate that higher twin star masses are more likely to be accompanied by large radius differences. These massive twin stars are generated by high values of the discontinuity in the energy density and the lowest possible values of the transition pressure that still result in masses of \(M \geq 2M_{\odot}\) at the maximum of the hadronic branch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010) arXiv:1010.5788

    Article  ADS  Google Scholar 

  2. E. Fonseca et al., Astrophys. J. 832, 167 (2016) arXiv:1603.00545

    Article  ADS  Google Scholar 

  3. J. Antoniadis, P.C. Freire, N. Wex, T.M. Tauris, R.S. Lynch, M.H. van Kerkwijk, M. Kramer, C. Bassa, V.S. Dhillon, T. Driebe et al., Science 340, 6131 (2013) arXiv:1304.6875

    Article  ADS  Google Scholar 

  4. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998) arXiv:nucl-th/9804027

    Article  ADS  Google Scholar 

  5. S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81, 015803 (2010) arXiv:0908.2344

    Article  ADS  Google Scholar 

  6. S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801 (2012) arXiv:1101.1921

    Article  ADS  Google Scholar 

  7. M.G. Alford, S. Han, M. Prakash, JPS Conf. Proc. 1, 013041 (2014)

    Google Scholar 

  8. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  9. E. Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  10. F. Weber, Prog. Part. Nucl. Phys. 54, 193 (2005) arXiv:astro-ph/0407155

    Article  ADS  Google Scholar 

  11. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007) arXiv:astro-ph/0612440

    Article  ADS  Google Scholar 

  12. A. Zacchi, R. Stiele, J. Schaffner-Bielich, Phys. Rev. D 92, 045022 (2015) arXiv:1506.01868

    Article  ADS  Google Scholar 

  13. M. Alford, M. Braby, M. Paris, S. Reddy, Astrophys. J. 629, 969 (2005) arXiv:nucl-th/0411016

    Article  ADS  Google Scholar 

  14. J. Coelho, C. Lenzi, M. Malheiro, R.M. Marinho Jr., M. Fiolhais, Int. J. Mod. Phys. D 19, 1521 (2010) arXiv:1001.1661

    Article  ADS  Google Scholar 

  15. H. Chen, M. Baldo, G. Burgio, H.J. Schulze, Phys. Rev. D 84, 105023 (2011) arXiv:1107.2497

    Article  ADS  Google Scholar 

  16. K. Masuda, T. Hatsuda, T. Takatsuka, Astrophys. J. 764, 12 (2013) arXiv:1205.3621

    Article  ADS  Google Scholar 

  17. N. Yasutake, R. Lastowiecki, S. Benic, D. Blaschke, T. Maruyama et al., Phys. Rev. C 89, 065803 (2014) arXiv:1403.7492

    Article  ADS  Google Scholar 

  18. M. Buballa et al., J. Phys. G 41, 123001 (2014) arXiv:1402.6911

    Article  ADS  Google Scholar 

  19. A. Zacchi, M. Hanauske, J. Schaffner-Bielich, Phys. Rev. D 93, 065011 (2016) arXiv:1510.00180

    Article  ADS  Google Scholar 

  20. U.H. Gerlach, Phys. Rev. 172, 1325 (1968)

    Article  ADS  Google Scholar 

  21. N.K. Glendenning, C. Kettner, Astron. Astrophys. 353, L9 (2000) arXiv:astro-ph/9807155

    ADS  Google Scholar 

  22. K. Schertler, C. Greiner, J. Schaffner-Bielich, M.H. Thoma, Nucl. Phys. A 677, 463 (2000) arXiv:astro-ph/0001467

    Article  ADS  Google Scholar 

  23. J. Schaffner-Bielich, M. Hanauske, H. Stoecker, W. Greiner, Phys. Rev. Lett. 89, 171101 (2002)

    Article  ADS  Google Scholar 

  24. A. Bhattacharyya, S.K. Ghosh, M. Hanauske, S. Raha, Astron. Astrophys. 418, 795 (2004) arXiv:astro-ph/0406509

    Article  Google Scholar 

  25. M.G. Alford, S. Han, M. Prakash, Phys. Rev. D 88, 083013 (2013) arXiv:1302.4732

    Article  ADS  Google Scholar 

  26. D.E. Alvarez-Castillo, D. Blaschke, Phys. Part. Nucl. 46, 846 (2015) arXiv:1412.8463

    Article  Google Scholar 

  27. V. Dexheimer, R. Negreiros, S. Schramm, Phys. Rev. C 91, 055808 (2015) arXiv:1411.4623

    Article  ADS  Google Scholar 

  28. S. Benic, D. Blaschke, D.E. Alvarez-Castillo, T. Fischer, S. Typel, Astron. Astrophys. 577, A40 (2015) arXiv:1411.2856

    Article  ADS  Google Scholar 

  29. M.G. Alford, G.F. Burgio, S. Han, G. Taranto, D. Zappala, Phys. Rev. D 92, 083002 (2015) arXiv:1501.07902

    Article  ADS  Google Scholar 

  30. D. Blaschke, D.E. Alvarez-Castillo, AIP Conf. Proc. 1701, 020013 (2016) arXiv:1503.03834

    Article  Google Scholar 

  31. A. Zacchi, L. Tolos, J. Schaffner-Bielich, Phys. Rev. D 95, 103008 (2017) arXiv:1612.06167

    Article  ADS  Google Scholar 

  32. D.E. Alvarez-Castillo, D.B. Blaschke, Phys. Rev. C 96, 045809 (2017)

    Article  ADS  Google Scholar 

  33. M.G. Alford, A. Sedrakian, Phys. Rev. Lett. 119, 161104 (2017) arXiv:1706.01592

    Article  ADS  Google Scholar 

  34. Z. Arzoumanian, K.C. Gendreau, C.L. Baker, T. Cazeau, P. Hestnes, J.W. Kellogg, S.J. Kenyon, R.P. Kozon, K.C. Liu, S.S. Manthripragada, The neutron star interior composition explorer (NICER): mission definition, in Space Telescopes and Instrumentation 2014, Vol. 9144 (SPIE, 2014) p. 914420

  35. A.L. Watts et al., Rev. Mod. Phys. 88, 021001 (2016) arXiv:1602.01081

    Article  ADS  Google Scholar 

  36. J. Zdunik, P. Haensel, Astron. Astrophys. 551, A61 (2013) arXiv:1211.1231

    Article  ADS  Google Scholar 

  37. J.M. Bardeen, K.S. Thorne, D.W. Meltzer, Astrophys. J. 145, 505 (1966)

    Article  ADS  Google Scholar 

  38. M.G. Alford, S.P. Harris, P.S. Sachdeva, arXiv:1705.09880 (2017)

  39. Z. Seidov, Sov. Astron 15, 347 (1971)

    ADS  Google Scholar 

  40. M.G. Alford, S. Han, Eur. Phys. J. A 52, 62 (2016) arXiv:1508.01261

    Article  ADS  Google Scholar 

  41. B. Kämpfer, Phys. Lett. B 101, 366 (1981)

    Article  ADS  Google Scholar 

  42. B. Kämpfer, J. Phys. A 14, L471 (1981)

    Article  Google Scholar 

  43. B. Kämpfer, Astron. Nachr. 303, 231 (1982)

    Article  ADS  Google Scholar 

  44. B. Kämpfer, J. Phys. G 9, 1487 (1983)

    Article  ADS  Google Scholar 

  45. B. Kämpfer, J. Phys. A 16, 633 (1983)

    Article  ADS  Google Scholar 

  46. R. Schaeffer, L. Zdunik, P. Haensel, Astron. Astrophys. 126, 121 (1983)

    ADS  Google Scholar 

  47. L. Lindblom, Phys. Rev. D 58, 024008 (1998) arXiv:gr-qc/9802072

    Article  ADS  Google Scholar 

  48. D. Gondek, P. Haensel, J.L. Zdunik, Astron. Astrophys. 325, 217 (1997) arXiv:arXiv:astro-ph/9705157

    ADS  Google Scholar 

  49. D. Radice, A. Burrows, D. Vartanyan, M.A. Skinner, J.C. Dolence, Astrophys. J. 850, 43 (2017) arXiv:1702.03927

    Article  ADS  Google Scholar 

  50. I. Mishustin, M. Hanauske, A. Bhattacharyya, L. Satarov, H. Stoecker et al., Phys. Lett. B 552, 1 (2003) arXiv:hep-ph/0210422

    Article  ADS  Google Scholar 

  51. S. Banik, M. Hanauske, D. Bandyopadhyay, W. Greiner, arXiv:astro-ph/0406315 (2004)

  52. S. Banik, M. Hanauske, D. Bandyopadhyay, J. Phys. G 31, S841 (2005) arXiv:nucl-th/0412110

    Article  ADS  Google Scholar 

  53. O. Heinimann, M. Hempel, F.K. Thielemann, Phys. Rev. D 94, 103008 (2016) arXiv:1608.08862

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Erik Christian.

Additional information

Communicated by L. Tolos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christian, JE., Zacchi, A. & Schaffner-Bielich, J. Classifications of twin star solutions for a constant speed of sound parameterized equation of state. Eur. Phys. J. A 54, 28 (2018). https://doi.org/10.1140/epja/i2018-12472-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12472-y

Navigation