Skip to main content
Log in

Thermal neutron capture cross-section and resonance integral measurements of 139La(n,\( \gamma\))140La and 140Ce(n,\( \gamma\))141Ce using a Am-Be neutron source

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Thermal neutron capture cross-sections and resonance integrals of 139La(n,\( \gamma\))140La and 140Ce (n,\( \gamma\))141Ce are measured with respect to reference reactions 197Au(n,\( \gamma\))198Au and 55Mn(n,\( \gamma\))56Mn using the neutron activation technique. Measurements are carried out using neutrons from an Am-Be source located inside a concrete bunker. Two different methods are used for determining self-shielding factors of activation foils as well as for finding the epithermal neutron spectrum shape factor. For 139 La with reference to 197 Au and 55 Mn the measured thermal cross sections are \( 9.24 \pm 0.25\) b and \( 9.28 \pm 0.37\) b, respectively, while the measured resonance integrals are \( 12.18 \pm 0.67\) b and \( 11.81 \pm 0.94\) b, respectively. For 140 Ce with reference to 197 Au and 55 Mn the measured thermal cross sections are \( 0.44 \pm 0.01\) b and \( 0.44 \pm 0.02\) b, respectively, while the measured resonance integrals are \( 0.55 \pm 0.03\) b and \( 0.54 \pm 0.04\) b, respectively. The present measurements are compared with earlier measurements and evaluations. Presently estimated values confirm the established 139La(n,\( \gamma\))140La cross-sections. The presently measured thermal capture cross-section 140Ce(n,\( \gamma\))141Ce , though lower than the evaluated data, is having higher accuracy compared to previous measurements with large uncertainties. The resonance integral measured is higher (like most previous measurements) than most evaluations requiring a revision of the evaluated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Barbagallo, N. Colonna, S. Altstadt, J. Andrzejewski, L. Audouin, V. Bé, EPJ Web of Conferences 66, 10001 (2014)

    Article  Google Scholar 

  2. S. Ganesan, Nucl. Data Sheets 123, 21 (2015)

    Article  ADS  Google Scholar 

  3. P. Panikkath, P. Mohanakrishnan, Eur. Phys. J. A 52, 276 (2016)

    Article  ADS  Google Scholar 

  4. L. Danu, P. Joshi, D. Biswas, S. Mukhopadhyay, A. Goswami, P. Prashanth, L. Kinage, R. Choudhury, B. Singh, Eur. Phys. J. A 48, 1 (2012)

    Article  Google Scholar 

  5. K. Shibata, O. Iwamoto, T. Nakagawa, N. Iwamoto, A. Ichihara, S. Kunieda, S. Chiba, K. Furutaka, N. Otuka, T. Ohasawa et al., J. Nucl. Sci. Technol. 48, 1 (2011)

    Article  Google Scholar 

  6. N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva et al., Nucl. Data Sheets 120, 272 (2014)

    Article  ADS  Google Scholar 

  7. N. Van Do, P.D. Khue, K.T. Thanh, N.T. Hien, G. Kim, S. Yang, Y.S. Cho, T.Y. Song, Y.O. Lee, S.G. Shin et al., Nucl. Instrum. Methods Phys. Res. B 335, 1 (2014)

    Article  ADS  Google Scholar 

  8. F. Farina, P. Vermaercke, K. Smits, L. Sneyers, K. Strijckmans, J. Radioanal. Nucl. Chem. 296, 931 (2013)

    Article  Google Scholar 

  9. M. Takiue, H. Ishikawa, Nucl. Instrum. Methods 148, 157 (1978)

    Article  ADS  Google Scholar 

  10. W. Mannhart, Tech. Rep., Technische Univ. Muenchen, Garching (FR Germany), Physik-Department (1975)

  11. G. Gleason, Radiochem. Radioanal. Lett. 23, 317 (1975)

    Google Scholar 

  12. H. O'Brien, J. Eldridge, R. Druschel, J. Halperin, J. Inorg. Nucl. Chem. 29, 584 (1967)

    Article  Google Scholar 

  13. W. Lyon, Nucl. Sci. Eng. 8, 378 (1960)

    Google Scholar 

  14. J. Cummins, Tech. Rep., United Kingdom Atomic Energy Authority. Research Group, Atomic Energy Research Establishment, Harwell, Berks, England (1957)

  15. P. Benoist, L. Kowarski, F. Netter, J. Phys. Radium (Paris) 12, 584 (1951)

    Article  Google Scholar 

  16. H. Pomerance, Phys. Rev. 83, 641 (1951)

    Article  ADS  Google Scholar 

  17. S. Harris, C.O. Muehlhause, G. Thomas, Phys. Rev. 79, 11 (1950)

    Article  ADS  Google Scholar 

  18. L. Seren, H.N. Friedlander, S.H. Turkel, Phys. Rev. 72, 888 (1947)

    Article  ADS  Google Scholar 

  19. R. Terlizzi, U. Abbondanno, G. Aerts, H. Alvarez, F. Alvarez-Velarde, S. Andriamonje, J. Andrzejewski, P. Assimakopoulos, L. Audouin, G. Badurek et al., Phys. Rev. C 75, 035807 (2007)

    Article  ADS  Google Scholar 

  20. R. Heft, A consistent set of nuclear-parameter values for absolute instrumental neutron activation analysis, in Proceedings of the American Nuclear Society Topical Conference on Computers in Activation Analysis and Gamma-Ray Spectroscopy, Mayaguez, Puerto Rico, 1978 (National Technical Information Service, U.S. Dept. of Commerce, 1979) p. 495

  21. E. Steinnes, J. Inorg. Nucl. Chem. 37, 1591 (1975)

    Article  ADS  Google Scholar 

  22. R. Van der Linden, F. De Corte, J. Hoste, J. Radioanal. Chem. 20, 695 (1974)

    Article  Google Scholar 

  23. A. Alian, H. Born, J. Kim, J. Radioanal. Nucl. Chem. 15, 535 (1973)

    Article  Google Scholar 

  24. E. Steinnes, J. Inorg. Nucl. Chem. 34, 2699 (1972)

    Article  Google Scholar 

  25. T. Ryves, J. Nucl. Energy 25, 129 (1971)

    Article  ADS  Google Scholar 

  26. E. Orvini, G. Gaggero, L. Lesca, A. Bresesti, M. Bresesti, J. Inorg. Nucl. Chem. 30, 1353 (1968)

    Article  Google Scholar 

  27. L. Breitenhuber, M. Pinter, Progress Report 68 (IAEA, 1968), report from misc. OECD Countries to EANDC

  28. K.F. Alexander, Tech. Rep. 23 (1964) zentralinst. f. Kernforschung Rossendorf Reports

  29. M. Chadwick, M. Herman, P. Oblož, Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  30. A. Koning, E. Bauge, C. Dean, E. Dupont, U. Fischer, R. Forrest, R. Jacqmin, H. Leeb, M. Kellett, R. Mills et al., J. Korean Phys. Soc. 59, 1057 (2011)

    Article  Google Scholar 

  31. S. Zabrodskaya, A. Ignatyuk, V. Koscheev, RUSFOND - Russian National Library of Evaluated Neutron Data, in VANT, Problems of Atomic Science and Technology - Series: Nuclear and Reactor Constants, issue no. 1-2 (2007) pp. 3--21

  32. Z. Ge, Z. Zhao, H. Xia, Y. Zhuang, T. Liu, J. Zhang, H. Wu, J. Korean Phys. Soc. 59, 1052 (2011)

    Article  Google Scholar 

  33. J.C. Sublet, L. Packer, J. Kopecky, R. Forrest, A. Koning, D. Rochman, CCFE Report, CCFE R(10)05 (2010)

  34. S.F. Mughabghab, Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections. $Z = 1-100$ (Elsevier, 2006)

  35. B. Pritychenko, S. Mughabghab, Nucl. Data Sheets 113, 3120 (2012)

    Article  ADS  Google Scholar 

  36. S. Torrel, K. Krane, Phys. Rev. C 86, 034340 (2012)

    Article  ADS  Google Scholar 

  37. J. Alstad, T. Jahnsen, A. Pappas, J. Inorg. Nucl. Chem. 29, 2155 (1967)

    Article  Google Scholar 

  38. P. Lantz, C. Baldock, L. Idom, Nucl. Sci. Eng. 20, 302 (1964)

    Google Scholar 

  39. H. Pomerance, Phys. Rev. 88, 412 (1952)

    Article  ADS  Google Scholar 

  40. D. Hughes, D. Sherman, Phys. Rev. 78, 632 (1950)

    Article  ADS  Google Scholar 

  41. S. Katcoff, J. Leary, K. Walsh, R. Elmer, S. Goldsmith, L. Hall, E. Newbury, J. Povelites, J. Waddell, J. Chem. Phys. 17, 421 (1949)

    Article  ADS  Google Scholar 

  42. M. Karadag, H. Yücel, Nucl. Instrum. Methods Phys. Res. A 550, 626 (2005)

    Article  ADS  Google Scholar 

  43. W. McElroy, A computer-automated iterative method for neutron flux spectra determination by foil activation, Technical Report (U.S. Dept. of Defense, 1967)

  44. IAEA, Reference neutron activation library, IAEA-TECDOC-1285 (International Atomic Energy Agenc, Vienna, 2002)

  45. J.F. Briesmeister, MCNP --A general Monte Carlo code for neutron and photon transport (Los Alamos National Laboratory, 1986)

  46. B. Marie-Martine, Valery P. Chechev, Nucl. Instrum. Methods Phys. Res. A 728, 157 (2013)

    Article  ADS  Google Scholar 

  47. M. Berger, J. Hubbell, S. Seltzer, J. Chang, J. Coursey, R. Sukumar, D. Zucker, K. Olsen, NIST Standard Reference Database 8 (NIST, 1990).

  48. F. De Corte, A. Simonits, A. De Wispelaere, J. Radioanal. Nucl. Chem. 133, 131 (1989)

    Article  Google Scholar 

  49. F. De Corte, K. Sordo-El Hammami, L. Moens, A. Simonits, A. De Wispelaere, J. Hoste, J. Radioanal. Chem. 62, 209 (1981)

    Article  Google Scholar 

  50. H. Yücel, M. Karadag, Ann. Nucl. Energy 31, 681 (2004)

    Article  Google Scholar 

  51. R.B.M. Sogbadji, B.J.B. Nyarko, E.H.K. Akaho, R.G. Abrefah, World J. Nucl. Sci. Technol. 1, 50 (2011)

    Article  Google Scholar 

  52. M. Blaauw, Nucl. Instrum. Methods Phys. Res. A 356, 403 (1995)

    Article  ADS  Google Scholar 

  53. E. Martinho, I. Gonç, Appl. Radiat. Isot. 58, 371 (2003)

    Article  Google Scholar 

  54. A. Trkov, G. Z, Nucl. Instrum. Methods Phys. Res. A 610, 553 (2009)

    Article  ADS  Google Scholar 

  55. D. Smith, N. Otuka, Nucl. Data Sheets 113, 3006 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyada Panikkath.

Additional information

Communicated by R.K. Bhandari

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panikkath, P., Mohanakrishnan, P. Thermal neutron capture cross-section and resonance integral measurements of 139La(n,\( \gamma\))140La and 140Ce(n,\( \gamma\))141Ce using a Am-Be neutron source. Eur. Phys. J. A 53, 46 (2017). https://doi.org/10.1140/epja/i2017-12231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12231-8

Navigation