Skip to main content
Log in

A unified approach to hadron phenomenology at zero and finite temperatures in a hard-wall AdS/QCD model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We propose a unified approach to study meson, nucleon and \( \Delta\) -baryon properties at zero and finite temperatures in the context of hard-wall AdS/QCD model. We first combine some previous works dealing with mesons and baryons separately, and introduce a new parameter \( \xi\) so that the model could give a universal description of spectrum and couplings of both sectors in a self-consistent way. All observables calculated numerically show reasonable agreement with experimental data. We then study these observables at nonzero temperature by modifying the AdS space-time into AdS-Schwartzchild space-time. Numerically solving the model, we find an interesting temperature dependence of the spectrum and the couplings. We also make a prediction on the finite-temperature decay width of some nucleon and \( \Delta\) excited states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) arXiv:hep-th/9711200

    Article  MathSciNet  ADS  Google Scholar 

  2. O. Aharony et al., Phys. Rep. 323, 183 (2000) arXiv:hep-th/9905111

    Article  MathSciNet  ADS  Google Scholar 

  3. S.J. Brodsky, G.F. de Teramond, Phys. Rev. D 77, 056007 (2008) arXiv:0707.3859 [hep-ph]

    Article  ADS  Google Scholar 

  4. S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  5. S.J. Brodsky, G.F. de Teramond, Phys. Lett. B 582, 211 (2004) arXiv:hep-th/0310227

    Article  ADS  Google Scholar 

  6. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 87, 056001 (2013) arXiv:1212.5196 [hep-ph]

    Article  ADS  Google Scholar 

  7. J. Erlich et al., Phys. Rev. Lett. 95, 261602 (2005) arXiv:hep-ph/0501128

    Article  ADS  Google Scholar 

  8. S.J. Brodsky, G.F. de Teramond, Phys. Rev. D 78, 025032 (2008) arXiv:0804.0452 [hep-ph]

    Article  ADS  Google Scholar 

  9. F. Zuo, Y. Jia, T. Huang, Eur. Phys. J. C 67, 253 (2010) arXiv:0910.3990 [hep-ph]

    Article  ADS  Google Scholar 

  10. F. Zuo, T. Huang, Eur. Phys. J. C 72, 1813 (2011) arXiv:1105.6008 [hep-ph]

    Article  ADS  Google Scholar 

  11. E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998) arXiv:hep-th/9803131

    Article  MathSciNet  Google Scholar 

  12. K. Ghoroku, M. Yahiro, Phys. Rev. D 73, 125010 (2006) arXiv:hep-ph/0512289

    Article  ADS  Google Scholar 

  13. M. Fujita, K. Fukushima, T. Misumi, M. Murata, Phys. Rev. D 80, 035001 (2009) arXiv:0903.2316 [hep-ph]

    Article  ADS  Google Scholar 

  14. H. Boschi-Filho, N.R.F. Braga, C.N. Ferreira, Phys. Rev. D 74, 086001 (2006) arXiv:hep-th/0607038

    Article  ADS  Google Scholar 

  15. Y. Kim, J.P. Lee, S.H. Lee, Phys. Rev. D 75, 114008 (2007) arXiv:hep-ph/0703172

    Article  ADS  Google Scholar 

  16. C.P. Herzog, Phys. Rev. Lett. 98, 091601 (2007) arXiv:hep-th/0608151

    Article  ADS  Google Scholar 

  17. K. Kajantie, T. Tahkokallio, J.T. Yee, JHEP 01, 019 (2007) arXiv:hep-ph/0609254

    Article  MathSciNet  ADS  Google Scholar 

  18. D.K. Hong, T. Inami, H.U. Yee, Phys. Lett. B 646, 165 (2007) arXiv:hep-ph/0609270

    Article  ADS  Google Scholar 

  19. P. Zhang, Phys. Rev. D 81, 114029 (2010) arXiv:1002.4352 [hep-ph]

    Article  ADS  Google Scholar 

  20. H.-C. Kim, Y. Kim, U. Yakhshiev, JHEP 11, 034 (2009) arXiv:0908.3406 [hep-ph]

    ADS  Google Scholar 

  21. H.C. Ahn, D.K. Hong, C. Park, S. Siwach, Phys. Rev. D 80, 054001 (2009) arXiv:0904.3731 [hep-ph]

    Article  ADS  Google Scholar 

  22. E.L. Hjort et al., Phys. Rev. Lett. 79, 4345 (1997)

    Article  ADS  Google Scholar 

  23. P. Fachini, J. Phys. G 30, S735 (2004) arXiv:nucl-ex/0403026

    Article  ADS  Google Scholar 

  24. L.A.H. Mamani, A.S. Miranda, H. Boschi-Filho, N.R.F. Braga, JHEP 03, 058 (2014) arXiv:1312.3815 [hep-th]

    Article  ADS  Google Scholar 

  25. P. Colangelo, F. Giannuzzi, S. Nicotri, Phys. Rev. D 80, 094019 (2009) arXiv:0909.1534 [hep-ph]

    Article  ADS  Google Scholar 

  26. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 87, 016017 (2013) arXiv:1212.6252 [hep-ph]

    Article  ADS  Google Scholar 

  27. Z. Li, B.-Q. Ma, Phys. Rev. D 89, 015014 (2014) arXiv:1312.3451 [hep-ph]

    Article  ADS  Google Scholar 

  28. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  29. Z. Abidin, C.E. Carlson, Phys. Rev. D 79, 115003 (2009) arXiv:0903.4818 [hep-ph]

    Article  ADS  Google Scholar 

  30. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 86, 036007 (2012) arXiv:1204.6612 [hep-ph]

    Article  ADS  Google Scholar 

  31. S.-L. Zhu, Phys. Rev. C 63, 018201 (2000) arXiv:nucl-th/0009062

    Article  ADS  Google Scholar 

  32. A. Vega, I. Schmidt, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 83, 036001 (2011) arXiv:1010.2815 [hep-ph]

    Article  ADS  Google Scholar 

  33. A. Vega, I. Schmidt, T. Gutsche, V.E. Lyubovitskij, Phys. Rev. D 85, 096004 (2012) arXiv:1202.4806 [hep-ph]

    Article  ADS  Google Scholar 

  34. T. Liu, B.-Q. Ma, Phys. Rev. D 92, 096003 (2015) arXiv:1510.07783 [hep-ph]

    Article  ADS  Google Scholar 

  35. R.A. Arndt et al., Phys. Rev. D 20, 651 (1979)

    Article  ADS  Google Scholar 

  36. R.F. Dashen, E. Jenkins, A.V. Manohar, Phys. Rev. D 49, 4713 (1994) arXiv:hep-ph/9310379

    Article  ADS  Google Scholar 

  37. R.F. Dashen, E. Jenkins, A.V. Manohar, Phys. Rev. D 51, 3697 (1995) arXiv:hep-ph/9411234

    Article  ADS  Google Scholar 

  38. A.J. Buchmann, S.A. Moszkowski, Phys. Rev. C 87, 028203 (2013) arXiv:1304.2194 [hep-ph]

    Article  ADS  Google Scholar 

  39. D.V. Bugg, Eur. Phys. J. C 33, 505 (2004)

    Article  ADS  Google Scholar 

  40. D.O. Riska, G.E. Brown, Nucl. Phys. A 679, 577 (2001) arXiv:nucl-th/0005049

    Article  ADS  Google Scholar 

  41. M.T. Pena, D.O. Riska, A. Stadler, Phys. Rev. C 60, 045201 (1999) arXiv:nucl-th/9902066

    Article  ADS  Google Scholar 

  42. H. van Hees, R. Rapp, Phys. Lett. B 606, 59 (2005) arXiv:nucl-th/0407050

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan Wang.

Additional information

Communicated by B. Ananthanarayan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ma, BQ. A unified approach to hadron phenomenology at zero and finite temperatures in a hard-wall AdS/QCD model. Eur. Phys. J. A 52, 122 (2016). https://doi.org/10.1140/epja/i2016-16122-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16122-2

Keywords

Navigation