Skip to main content
Log in

Role of quark-interchange processes in evolution of mesonic matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We divide the cross-section for a meson-meson reaction into three parts. The first part is for the quark-interchange process, the second for quark-antiquark annihilation processes and the third for resonant processes. Master rate equations are established to yield time dependence of fugacities of pions, rhos, kaons and vector kaons. The equations include cross-sections for inelastic scattering of pions, rhos, kaons and vector kaons. Cross-sections for quark-interchange-induced reactions, that were obtained in a potential model, are parametrized for convenient use. The number densities of π and ρ (K and K * are altered by quark-interchange processes in equal magnitudes but opposite signs. The master rate equations combined with the hydrodynamic equations for longitudinal and transverse expansion are solved with many sets of initial meson fugacities. Quark-interchange processes are shown to be important in the contribution of the inelastic meson-meson scattering to the evolution of mesonic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sorge, H. Stöcker, W. Greiner, Ann. Phys. (N.Y.) 192, 266 (1989).

    Article  ADS  MATH  Google Scholar 

  2. H. Sorge, Phys. Rev. C 52, 3291 (1995).

    Article  ADS  Google Scholar 

  3. B.-A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995).

    Article  ADS  Google Scholar 

  4. Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005).

    Article  ADS  Google Scholar 

  5. W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999).

    Article  ADS  Google Scholar 

  6. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).

    Article  ADS  Google Scholar 

  7. C. Nonaka, S.A. Bass, Phys. Rev. C 75, 014902 (2007).

    Article  ADS  Google Scholar 

  8. D.E. Kahana, S.H. Kahana, Phys. Rev. C 58, 3574 (1998).

    Article  ADS  Google Scholar 

  9. D.E. Kahana, S.H. Kahana, Phys. Rev. C 59, 1651 (1999).

    Article  ADS  Google Scholar 

  10. B.-H. Sa, A. Tai, Comput. Phys. Commun. 90, 121 (1995).

    Article  ADS  Google Scholar 

  11. A. Tai, B.-H. Sa, Comput. Phys. Commun. 116, 353 (1999).

    Article  ADS  Google Scholar 

  12. T.J. Humanic, Phys. Rev. C 57, 866 (1998).

    Article  ADS  Google Scholar 

  13. Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61, 024901 (1999).

    Article  ADS  Google Scholar 

  14. T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636, 299 (2006).

    Article  ADS  Google Scholar 

  15. L. Alvarez-Ruso, V. Koch, Phys. Rev. C 65, 054901 (2002).

    Article  ADS  Google Scholar 

  16. S. Gavin, Nucl. Phys. B 351, 561 (1991).

    Article  ADS  Google Scholar 

  17. C. Song, V. Koch, Phys. Rev. C 55, 3026 (1997).

    Article  ADS  Google Scholar 

  18. S. Pratt, K. Haglin, Phys. Rev. C 59, 3304 (1999).

    Article  ADS  Google Scholar 

  19. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 69, 034909 (2004).

    Article  Google Scholar 

  20. STAR Collaboration (C. Adler et al.), Phys. Lett. B 595, 143 (2004).

    Article  ADS  Google Scholar 

  21. BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005).

    Article  Google Scholar 

  22. PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005).

    Article  ADS  Google Scholar 

  23. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 092301 (2004).

    Article  Google Scholar 

  24. C. Amsler, N.A. Törnqvist, Phys. Rep. 389, 61 (2004).

    Article  ADS  Google Scholar 

  25. D.V. Bugg, Phys. Rep. 397, 257 (2004).

    Article  ADS  Google Scholar 

  26. Y.-Q. Li, X.-M. Xu, Nucl. Phys. A 794, 210 (2007).

    Article  ADS  Google Scholar 

  27. T. Barnes, E.S. Swanson, Phys. Rev. D 46, 131 (1992).

    Article  ADS  Google Scholar 

  28. E.S. Swanson, Ann. Phys. (N.Y.) 220, 73 (1992).

    Article  ADS  Google Scholar 

  29. J.D. Bjorken, Phys. Rev. D 27, 140 (1983).

    Article  ADS  Google Scholar 

  30. H. Sorge, Phys. Lett. B 402, 251 (1997).

    Article  ADS  Google Scholar 

  31. L.V. Bravina et al., Phys. Rev. C 60, 024904 (1999).

    Article  ADS  Google Scholar 

  32. P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Lett. B 459, 667 (1999).

    Article  ADS  Google Scholar 

  33. P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C 62, 054909 (2000).

    Article  ADS  Google Scholar 

  34. W. Buchmüller, S.-H.H. Tye, Phys. Rev. D 24, 132 (1981).

    Article  ADS  Google Scholar 

  35. X.-M. Xu, Nucl. Phys. A 697, 825 (2002).

    Article  ADS  Google Scholar 

  36. T. Barnes, E.S. Swanson, C.-Y. Wong, X.-M. Xu, Phys. Rev. C 68, 014903 (2003).

    Article  ADS  Google Scholar 

  37. G.E. Brown, C.M. Ko, Z.G. Wu, L.H. Xia, Phys. Rev. C 43, 1881 (1991).

    Article  ADS  Google Scholar 

  38. W. Cassing, E.L. Bratkovskaya, U. Mosel, S. Teis, A. Sibirtsev, Nucl. Phys. A 614, 415 (1997).

    Article  ADS  Google Scholar 

  39. Particle Data Group (W.-M. Yao et al.), J. Phys. G 33, 1 (2006).

    Article  ADS  Google Scholar 

  40. F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B 605, 579 (2001).

    Article  ADS  Google Scholar 

  41. X.-N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991).

    Article  ADS  Google Scholar 

  42. M. Gyulassy, X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994).

    Article  ADS  Google Scholar 

  43. X.-N. Wang, Phys. Rep. 280, 287 (1997).

    Article  Google Scholar 

  44. X.-M. Xu, D. Kharzeev, H. Satz, X.-N. Wang, Phys. Rev. C 53, 3051 (1996).

    Article  ADS  Google Scholar 

  45. T.S. Biró, P. Lévai, J. Zimányi, Phys. Rev. C 59, 1574 (1999).

    Article  ADS  Google Scholar 

  46. O. Barannikova, for the STAR Collaboration, arXiv:nucl-ex/0403014v1

  47. P. Lévai, B. Müller, X.-N. Wang, Phys. Rev. C 51, 3326 (1995).

    Article  ADS  Google Scholar 

  48. V. Flaminio, W.G. Moorhead, D.R.O. Morrison, N. Rivoire, CERN, Geneva Report No. CERN-HERA-84-01, 1984

  49. H. von Gersdorff, L. McLerran, M. Kataja, P.V. Ruuskanen, Phys. Rev. D 34, 794 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao -Ming Xu.

Additional information

Communicated by T. B̅ró

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.Q., Xu, X.M. & Ge, H.J. Role of quark-interchange processes in evolution of mesonic matter. Eur. Phys. J. A 47, 65 (2011). https://doi.org/10.1140/epja/i2011-11065-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2011-11065-8

Keywords

Navigation