Skip to main content
Log in

The symmetric heavy-light ansatz

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The symmetric heavy-light ansatz is a method for finding the ground state of any dilute unpolarized system of attractive two-component fermions. Operationally it can be viewed as a generalization of the Kohn-Sham equations in density functional theory applied to N -body density correlations. While the original Hamiltonian has an exact Z2 symmetry, the heavy-light ansatz breaks this symmetry by skewing the mass ratio of the two components. In the limit where one component is infinitely heavy, the many-body problem can be solved in terms of single-particle orbitals. The original Z2 symmetry is recovered by enforcing Z2 symmetry as a constraint on N -body density correlations for the two components. For the 1D, 2D, and 3D attractive Hubbard models the method is in very good agreement with exact Lanczos calculations for few-body systems at arbitrary coupling. For the 3D attractive Hubbard model there is very good agreement with lattice Monte Carlo results for many-body systems in the limit of infinite scattering length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Eagles, Phys. Rev. 186, 456 (1969).

    Article  ADS  Google Scholar 

  2. A.J. Leggett, in Modern Trends in the Theory of Condensed Matter, Proceedings of the XVIth Karpacz Winter School of Theoretical Physics, Karpacz, Poland, 1980 (Springer-Verlag, Berlin, 1980) p. 13.

  3. P. Nozieres, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

    Article  ADS  Google Scholar 

  4. K.M. O'Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade, J.E. Thomas, Science 298, 2179 (2002).

    Article  ADS  Google Scholar 

  5. S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. van Kempen, B.J. Verhaar, W. Ketterle, Science 300, 1723 (2003).

    Article  ADS  Google Scholar 

  6. C.A. Regal, D.S. Jin, Phys. Rev. Lett. 90, 230404 (2003).

    Article  ADS  Google Scholar 

  7. T. Bourdel, J. Cubizolles, L. Khaykovich, K.M.F. Magalhaes, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, C. Salomon, Phys. Rev. Lett. 91, 020402 (2003).

    Article  ADS  Google Scholar 

  8. M.E. Gehm, S.L. Hemmer, S.R. Granade, K.M. O'Hara, J.E. Thomas, Phys. Rev. A 68, 011401(R) (2003).

    Article  ADS  Google Scholar 

  9. M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, Phys. Rev. Lett. 92, 120401 (2004).

    Article  ADS  Google Scholar 

  10. J. Kinast, A. Turlapov, J.E. Thomas, Q. Chen, J. Stajic, K. Levin, Science 307, 1296 (2005) cond-mat/0502087.

    Article  ADS  Google Scholar 

  11. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956).

    Article  MATH  ADS  Google Scholar 

  12. L.P. Gor'kov, Sov. Phys. JETP 7, 505 (1958).

    MATH  MathSciNet  Google Scholar 

  13. D.S. Petrov, Phys. Rev. A 67, 010703(R) (2003).

    Article  ADS  Google Scholar 

  14. R.d.L. Kronig, W.G. Penney, Proc. R. Soc. London, Ser. A 130, 499 (1931).

    MATH  Google Scholar 

  15. J.-W. Chen, D.B. Kaplan, Phys. Rev. Lett. 92, 257002 (2004) hep-lat/0308016.

    Article  ADS  Google Scholar 

  16. D. Lee, T. Schäfer, Phys. Rev. C 72, 024006 (2005) nucl-th/0412002.

    Article  ADS  Google Scholar 

  17. D. Lee, B. Borasoy, T. Schäfer, Phys. Rev. C 70, 014007 (2004) nucl-th/0402072.

    Article  ADS  Google Scholar 

  18. M. Wingate, cond-mat/0502372 (2005).

  19. A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. Lett. 96, 090404 (2006) cond-mat/0505374.

    Article  ADS  Google Scholar 

  20. D. Lee, T. Schäfer, Phys. Rev. C 73, 015201 (2006) nucl-th/0509017.

    Article  ADS  Google Scholar 

  21. D. Lee, T. Schäfer, Phys. Rev. C 73, 015202 (2006) nucl-th/0509018.

    Article  ADS  Google Scholar 

  22. D. Lee, Phys. Rev. B 73, 115112 (2006) cond-mat/0511332.

    Article  ADS  Google Scholar 

  23. E. Burovski, N. Prokofev, B. Svistunov, M. Troyer, Phys. Rev. Lett. 96, 160402 (2006) cond-mat/0602224.

    Article  ADS  Google Scholar 

  24. E. Burovski, N. Prokofev, B. Svistunov, M. Troyer, New J. Phys. 8, 153 (2006) cond-mat/0605350.

    Article  ADS  Google Scholar 

  25. D. Lee, Phys. Rev. B 75, 134502 (2007) cond-mat/ 0606706.

    Article  ADS  Google Scholar 

  26. D. Lee, Phys. Rev. Lett. 98, 182501 (2007) nucl-th/ 0701041.

    Article  ADS  Google Scholar 

  27. D. Lee, R. Thomson, Phys. Rev. C 75, 064003 (2007) nucl-th/0701048.

    Article  ADS  Google Scholar 

  28. C. Lanczos, J. Res. Natl. Bur. Stand. 45, 255 (1950).

    MathSciNet  Google Scholar 

  29. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965).

  30. D. Lee, Phys. Rev. A 73, 063204 (2006) physics/0512085.

    Article  ADS  Google Scholar 

  31. M. Lüscher, Commun. Math. Phys. 105, 153 (1986).

    Article  ADS  Google Scholar 

  32. S.R. Beane, P.F. Bedaque, A. Parreno, M.J. Savage, Phys. Lett. B 585, 106 (2004) hep-lat/0312004.

    Article  ADS  Google Scholar 

  33. R. Seki, U. van Kolck, Phys. Rev. C 73, 044006 (2006) nucl-th/0509094.

    Article  ADS  Google Scholar 

  34. B. Borasoy, E. Epelbaum, H. Krebs, D. Lee, U.-G. Meißner, Eur. Phys. J. A 31, 105 (2007) nucl-th/0611087.

    Article  ADS  Google Scholar 

  35. G. Rupak, nucl-th/0605074 (2006).

  36. D.S. Petrov, C. Salomon, G.V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004).

    Article  ADS  Google Scholar 

  37. J. Carlson, S.Y. Chang, V.R. Pandharipande, K. Schmidt, Phys. Rev. Lett. 91, 50401 (2003) physics/0303094.

    Article  ADS  Google Scholar 

  38. S.Y. Chang, V.R. Pandharipande, J. Carlson, K.E. Schmidt, Phys. Rev. A 70, 043602 (2004).

    Article  ADS  Google Scholar 

  39. G.E. Astrakharchik, J. Boronat, J. Casulleras, S. Giorgini, Phys. Rev. Lett. 93, 200404 (2004) cond-mat/0406113.

    Article  ADS  Google Scholar 

  40. J.R. Engelbrecht, M. Randeria, C.S. de Melo, Phys. Rev. B 55, 15153 (1997).

    Article  ADS  Google Scholar 

  41. G.A. Baker, Phys. Rev. C 60, 054311 (1999).

    Article  ADS  Google Scholar 

  42. H. Heiselberg, Phys. Rev. A 63, 043606 (2001) cond-mat/0002056.

    Article  ADS  Google Scholar 

  43. A. Perali, P. Pieri, G.C. Strinati, Phys. Rev. Lett. 93, 100404 (2004).

    Article  ADS  Google Scholar 

  44. T. Papenbrock, Phys. Rev. A 72, 041603 (2005) cond-mat/0507183.

    Article  ADS  Google Scholar 

  45. T. Schäfer, C.-W. Kao, S.R. Cotanch, Nucl. Phys. A 762, 82 (2005) nucl-th/0504088.

    Article  ADS  Google Scholar 

  46. J. Chen, Chinese Phys. Lett. 24, 1825 (2007) nucl-th/0602065.

    Article  ADS  Google Scholar 

  47. Y. Nishida, D.T. Son, Phys. Rev. Lett. 97, 050403 (2006) cond-mat/0604500.

    Article  ADS  Google Scholar 

  48. Y. Nishida, D.T. Son, Phys. Rev. A 75, 063617 (2007) cond-mat/0607835.

    Article  ADS  MathSciNet  Google Scholar 

  49. M.Y. Veillette, D.E. Sheehy, L. Radzihovsky, Phys. Rev. A 75, 043614 (2007) cond-mat/0610798.

    Article  ADS  Google Scholar 

  50. P. Arnold, J.E. Drut, D.T. Son, Phys. Rev. A 75, 043605 (2007) cond-mat/0608477.

    Article  ADS  Google Scholar 

  51. O. Juillet, New J. Phys. 9, 163 (2007) cond-mat/0609063.

    Article  ADS  Google Scholar 

  52. T. Abe, R. Seki, arXiv:0708.2524 [nucl-th] (2007).

  53. A. Bulgac, J.E. Drut, P. Magierski, G. Wlazlowski, arXiv.org:0801.1504 (2008).

  54. J.T. Stewart, J.P. Gaebler, C.A. Regal, D.S. Jin, Phys. Rev. Lett. 97, 220406 (2006) arXiv.org:cond-mat/0607776.

    Article  ADS  Google Scholar 

  55. K. Huang, C.N. Yang, Phys. Rev. 105, 767 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. T.D. Lee, C.N. Yang, Phys. Rev. 105, 1119 (1957).

    Article  ADS  Google Scholar 

  57. J.-W. Chen, E. Nakano, Phys. Rev. A 75, 043620 (2007) cond-mat/0610011.

    Article  ADS  Google Scholar 

  58. T. Papenbrock, A. Bhattacharyya, Phys. Rev. C 75, 014304 (2007) nucl-th/0609084.

    Article  ADS  Google Scholar 

  59. J. Engel, Phys. Rev. C 75, 014306 (2007) nucl-th/0610043.

    Article  ADS  MathSciNet  Google Scholar 

  60. R.J. Furnstahl, nucl-th/0702040 (2007).

  61. A. Bulgac, Phys. Rev. A 76, 040502(R) (2007) cond-mat/0703526.

    Article  ADS  Google Scholar 

  62. R.J. Furnstahl, G. Rupak, T. Schafer, arXiv:0801.0729 [nucl-th] (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lee.

Additional information

U.-G. Meißner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D. The symmetric heavy-light ansatz. Eur. Phys. J. A 35, 171–187 (2008). https://doi.org/10.1140/epja/i2008-10537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10537-2

PACS.

Navigation