Skip to main content
Log in

Translocation of knotted proteins through a pore

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We report the results of molecular dynamics simulations of translocation of knotted proteins through pores. The protein is pulled into the pore with a constant force, which in many cases leads to the tightening of the knot. Since the radius of tightened knot is larger than that of the pore opening, the tight knot can block the pore thus preventing further translocation of the chain. Analyzing six different proteins, we show that the stuck probability increases with the applied force and that final positions of the tightened knot along the protein backbone are not random but are usually associated with sharp turns in the polypeptide chain. The combined effect of the confining geometry of the pore and the inhomogeneous character of the protein chain leads thus to the appearance of topological traps, which can immobilize the knot and lead to the jamming of the pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.R. Taylor, K. Lin, Nature 421, 25 (2003)

    Article  ADS  Google Scholar 

  2. P. Virnau, L. Mirny, M. Kardar, PLoS Comput. Biol. 2(9), e122 (2006)

    Article  ADS  Google Scholar 

  3. D. Bölinger, J.I. Sułkowska, H.P. Hsu, L.A. Mirny, M. Kardar, J.N. Onuchic, P. Virnau, PLoS Comput. Biol. 6(4), e1000731 (2010)

    Article  Google Scholar 

  4. R.C. Lua, A.Y. Grosberg, PLoS Comput. Biol. 2(5), e45 (2006)

    Article  ADS  Google Scholar 

  5. T. Bornschlögl, D.M. Anstrom, E. Mey, J. Dzubiella, M. Rief, K.T. Forest, Biophys. J. 96, 1508 (2009)

    Article  ADS  Google Scholar 

  6. P. Szymczak, Biochem. Soc. Trans. 41, 620 (2013)

    Article  Google Scholar 

  7. A. Förster, C. Hill, Trends Cell. Biol. 13, 550 (2003)

    Article  Google Scholar 

  8. P. Rehling, K. Brandner, N. Pfanner, Nat. Rev. Mol. Cell Biol. 5, 519 (2004)

    Article  Google Scholar 

  9. N.N. Alder, S.M. Theg, Trends Biochem. Sci. 28, 442 (2003)

    Article  Google Scholar 

  10. J. Sulkowska, P. Sulkowski, P. Szymczak, M. Cieplak, Phys. Rev. Lett. 100, 058106 (2008)

    Article  ADS  Google Scholar 

  11. J. Dzubiella, Biophys. J. 96, 831 (2009)

    Article  ADS  Google Scholar 

  12. M. Cieplak, T.X. Hoang, M.O. Robbins, Proteins: Struct. Funct. Bio. 56, 285 (2003)

    Article  Google Scholar 

  13. J. Tsai, R. Taylor, C. Chotchia, M. Gerstein, J. Mol. Biol. 290, 253 (1999)

    Article  Google Scholar 

  14. J.M. Deutsch, arXiv preprint [arXiv:1303.0453] (2013)

  15. W.R. Taylor, Nature 406, 916 (2000)

    Article  ADS  Google Scholar 

  16. M.J. Betts, R.B. Russell, in Bioinformatics for Geneticists, edited by M.R. Barnes, I.C. Fray (Wiley Publishers, 2003), p. 289

  17. R. Metzler, W. Reisner, R. Riehn, R. Austin, J.O. Tegenfeldt, I.M. Sokolov, Europhys. Lett. 76, 696 (2006)

    Article  ADS  Google Scholar 

  18. A. Rosa, M. Di Ventra, C. Micheletti, Phys. Rev. Lett. 109, 118301 (2012)

    Article  ADS  Google Scholar 

  19. R. Matthews, A. Louis, J. Yeomans, Phys. Rev. Lett. 102, 088101 (2009)

    Article  ADS  Google Scholar 

  20. D. Marenduzzo, E. Orlandini, A. Stasiak, L. Tubiana, C. Micheletti, et al., Proc. Natl. Acad. Sci. USA 106, 22269 (2009)

    Article  ADS  Google Scholar 

  21. M.L. Mansfield, Nat. Struct. Mol. Biol. 1, 213 (1994)

    Article  Google Scholar 

  22. L. Huang, D.E. Makarov, J. Chem. Phys. 129, 121107 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Szymczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szymczak, P. Translocation of knotted proteins through a pore. Eur. Phys. J. Spec. Top. 223, 1805–1812 (2014). https://doi.org/10.1140/epjst/e2014-02227-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02227-6

Keywords

Navigation