Skip to main content
Log in

2-Dimensional oxide electronic gases: Interfaces and surfaces

  • Review
  • Interfaces and Surfaces
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Numerous solid-state properties depend on the crystal structure. Recently, the idea of searching for novel properties or novel functionalities at artificial interfaces – where a breaking of inversion symmetry and a change in the atomic environment occur – has been developing rapidly and has led to a large new field of research. In this short paper, we will summarize the properties of the 2-d electron gas found at the interface between the two band insulators LaAlO3 and SrTiO3, discuss briefly the recent observations of electron gases at oxide surfaces and examine the possible similarities and differences between these exciting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. Ahn, et al., Rev. Mod. Phys. 78, 1185 (2006)

    Article  ADS  Google Scholar 

  2. P. Zubko, S. Gariglio, M. Gabay, Ph. Ghosez, J.-M. Triscone, Ann. Rev. Cond. Matter Phys. 2, 141165 (2011)

    Google Scholar 

  3. H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nature Mater. 11, 103113 (2012)

    Article  Google Scholar 

  4. A. Ohtomo, H.Y. Hwang, Nature 427, 423 (2004)

    Article  ADS  Google Scholar 

  5. N. Nakagawa, H.Y. Hwang, D.A. Muller, Nature Mater. 5, 204209 (2006)

    Article  Google Scholar 

  6. Z.S. Popovic, et al., Phys. Rev. Lett. 101, 256801 (2008)

    Article  ADS  Google Scholar 

  7. A.D. Caviglia, et al., Nature 456, 624 (2008)

    Article  ADS  Google Scholar 

  8. C. Bell, et al., Phys. Rev. Lett. 103, 226802 (2009)

    Article  ADS  Google Scholar 

  9. T. Schneider, A. Caviglia, S. Gariglio, N. Reyren, J.-M. Triscone, Phys. Rev. B 79, 184502 (2009)

    Article  ADS  Google Scholar 

  10. A.D. Caviglia, et al., Phys. Rev. Lett. 104, 126803 (2010)

    Article  ADS  Google Scholar 

  11. A. Fête, S. Gariglio, A. Caviglia, J.-M. Triscone, M. Gabay, Phys. Rev. B 86, 201105(R) (2012)

    Article  ADS  Google Scholar 

  12. P. Delugas, et al., Phys. Rev. Lett. 106, 166807 (2011)

    Article  ADS  Google Scholar 

  13. A.D. Caviglia, et al., Phys. Rev. Lett. 105, 236802 (2010)

    Article  ADS  Google Scholar 

  14. M. Ben Shalom, A. Ron, A. Palevski, Y. Dagan, Phys. Rev. Lett. 105, 206401 (2010)

    Article  ADS  Google Scholar 

  15. C. Cen, et al., Nature Mater. 7, 298302 (2008)

    Article  MathSciNet  Google Scholar 

  16. C. Cen, S. Thiel, J. Mannhart, J. Levy, Science 323, 10261030 (2009)

    Article  Google Scholar 

  17. D. Stornaiuolo, et al., Appl. Phys. Lett. 101, 222601 (2012)

    Article  ADS  Google Scholar 

  18. L. Li, C. Richter, J. Mannhart, R.C. Ashoori, Nature Phys. 7, 762 (2011)

    Article  ADS  Google Scholar 

  19. J.A. Bert, et al., Nature Phys. 7, 767 (2011)

    Article  ADS  Google Scholar 

  20. K. Ueno, S. Nakamura, H. Shimotani, A. Ohtomo, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nature Mater. 7, 855 (2008)

    Article  ADS  Google Scholar 

  21. K. Ueno, S. Nakamura, H. Shimotani, H.T. Yuan, N. Kimura, T. Nojima, H. Aoki, Y. Iwasa, M. Kawasaki, Nature Nanotechnology 6, 408 (2011)

    Article  ADS  Google Scholar 

  22. H. Nakamura, T. Kimura, Phys. Rev. B 80, 121308(R) (2009)

    ADS  Google Scholar 

  23. H. Nakamura, T. Koga, T. Kimura, Phys. Rev. Lett. 108, 206601 (2012)

    Article  ADS  Google Scholar 

  24. A.F. Santander-Syro, et al., Phys. Rev. B 86, 121107(R) (2012)

    Article  ADS  Google Scholar 

  25. A.F. Santander-Syro, et al., Nature 469, 189 (2011)

    Article  ADS  Google Scholar 

  26. W. Meevasana, et al., Nature Mater. 10, 114 (2011)

    Article  ADS  Google Scholar 

  27. N.P. Guisinger, et al., ACS Nano 3, 4132 (2009)

    Article  Google Scholar 

  28. Y. Lee, et al., Phys. Rev. Lett. 106, 136809 (2011)

    Article  ADS  Google Scholar 

  29. P.D.C. King, et al., Phys. Rev. Lett. 108, 117602 (2012)

    Article  ADS  Google Scholar 

  30. R. Pentcheva, W.E. Pickett, Phys. Rev. Lett. 102, 107602 (2009)

    Article  ADS  Google Scholar 

  31. R. Pentcheva, W.E. Pickett, J. Phys.: Cond. Matter 22, 043001 (2010)

    Article  ADS  Google Scholar 

  32. M. Sing, et al., Phys. Rev. Lett. 102, 176805 (2009)

    Article  ADS  Google Scholar 

  33. C. Cantoni, et al., Adv. Mater. 24, 39523957 (2012)

    Article  Google Scholar 

  34. G. Herranz, F. Sanchez, N. Dix, M. Scigaj, J. Fontcuberta, Scientific Reports 2, 758 (2012)

    Article  ADS  Google Scholar 

  35. A. Annadi, Q. Zhang, X. Renshaw Wang, N. Tuzla, K. [Gopinadhan, W.M. Lü, A. Roy Barman, Z.Q. Liu, A. Srivastava, S. Saha, Y.L. Zhao, S.W. Zeng, S. Dhar , E. Olsson, B. Gu, S. Yunoki, S. Maekawa, H. Hilgenkamp, T. Venkatesan, Ariando, Nat. Comm. 4, 1838 (2013), doi:10.1038/ncomms2804

    Article  ADS  Google Scholar 

  36. F. El-Mellouhi, et al., Phys. Rev. B 87, 035107 (2013)

    Article  ADS  Google Scholar 

  37. M. Stengel, Phys. Rev. Lett. 106, 136803 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gabay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabay, M., Gariglio, S., Triscone, JM. et al. 2-Dimensional oxide electronic gases: Interfaces and surfaces. Eur. Phys. J. Spec. Top. 222, 1177–1183 (2013). https://doi.org/10.1140/epjst/e2013-01913-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-01913-1

Keywords

Navigation