Skip to main content
Log in

MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR

  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10−5 to below 10−8 for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an A_dvanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10−9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e.g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility.Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner.The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with β-delayed neutron detection) has been achieved with rates of only a few atoms per second.This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003)

    Article  ADS  Google Scholar 

  2. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  3. K. Blaum, N. Yu. Novikov, G. Werth, Contemp. Phys. 51, 149 (2010)

    Article  ADS  Google Scholar 

  4. G. Bollen, Nucl. Phys. A 693, 3 (2001)

    Article  ADS  Google Scholar 

  5. K. Blaum, et al., Phys. Rev. Lett. 91, 260801 (2003)

    Article  ADS  Google Scholar 

  6. F. Herfurth, et al., J. Phys. B 36, 931 (2003)

    Article  ADS  Google Scholar 

  7. M. Smith, et al., Phys. Rev. Lett. 101, 202501 (2008)

    Article  ADS  Google Scholar 

  8. S. Schwarz, et al., Nucl. Phys. A 693, 533 (2001)

    Article  ADS  Google Scholar 

  9. K. Blaum, et al., Europhys. Lett. 67, 586 (2004)

    Article  ADS  Google Scholar 

  10. Van Roosbroeck J., et al., Phys. Rev. Lett. 92, 112501 (2004)

    Article  ADS  Google Scholar 

  11. M. Block, et al., Phys. Rev. Lett. 100, 132501 (2008)

    Article  ADS  Google Scholar 

  12. B. Fogelberg, et al., Phys. Rev. Lett. 82, 1823 (1999)

    Article  ADS  Google Scholar 

  13. J.C. Hardy, I.S. Towner, Phys. Rev. C 79, 055502 (2009)

    Article  ADS  Google Scholar 

  14. I.S. Towner, J.C. Hardy, J. Phys. G 29, 197 (2003)

    Article  ADS  Google Scholar 

  15. H. Abele, et al., Phys. Rev. Lett. 88, 211801 (2002)

    Article  ADS  Google Scholar 

  16. B Sciascia, the FlaviaNet Kaon Working Group, Nucl. Phys. B. Proc. Suppl. 181-182, 83 (2008)

    Article  ADS  Google Scholar 

  17. W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006)

    Article  ADS  Google Scholar 

  18. I.S. Towner, J.C. Hardy, Phys. Rev. C 77, 025501 (2008)

    Article  ADS  Google Scholar 

  19. W.J. Marciano, A. Sirlin, Phys. Rev. Lett. 56, 22 (1986)

    Article  ADS  Google Scholar 

  20. K. Hagiwara, et al., Phys. Rev. D 66, 010001 (2002)

    Article  ADS  Google Scholar 

  21. P. Langacker, D. London, Phys. Rev. D 38, 886 (1988)

    Article  ADS  Google Scholar 

  22. J. Maalampi, M. Roos, Phys. Rep. 186, 53 (1990)

    Article  ADS  Google Scholar 

  23. P. Langacker, M. Luo, Phys. Rev. D 45, 278 (1992)

    Article  ADS  Google Scholar 

  24. W.J. Marciano, A. Sirlin, Phys. Rev. D 35, 1672 (1987)

    Article  ADS  Google Scholar 

  25. J. Deutsch, in Workshop on the Breaking of Fundamental Symmetries in Nuclei (Santa Fe, 1988)

  26. B.R. Holstein, S.B. Treiman, Phys. Rev. D 16, 2369 (1977)

    Article  ADS  Google Scholar 

  27. Y. Liao, X. Li, Phys. Lett. B 503, 301 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Kellerbauer, et al., Phys. Rev. Lett. 93, 072502 (2004)

    Article  ADS  Google Scholar 

  29. G. Savard, et al., Phys. Rev. Lett. 95, 102501 (2005)

    Article  ADS  Google Scholar 

  30. T. Eronen, et al., Phys. Rev. Lett. 97, 232501 (2006)

    Article  ADS  Google Scholar 

  31. T. Eronen, et al., Phys. Rev. Lett. 100, 132502 (2008)

    Article  ADS  Google Scholar 

  32. M. Mukherjee, et al., Phys. Rev. Lett. 93, 150801 (2004)

    Article  ADS  Google Scholar 

  33. F. Herfurth, et al., Phys. Rev. Lett. 87, 142501 (2001)

    Article  ADS  Google Scholar 

  34. G. Bollen, et al., Phys. Rev. Lett. 96, 152501 (2006)

    Article  ADS  Google Scholar 

  35. S. George, et al., Phys. Rev. Lett. 98, 162501 (2007)

    Article  ADS  Google Scholar 

  36. T. Eronen, et al., Phys. Rev. C 79, 032802(R) (2009)

    Article  ADS  Google Scholar 

  37. T. Eronen, Ph.D. thesis, University of Jyväskylä, Finland (2008)

  38. T. Eronen, et al., Phys. Lett. B 636, 191 (2006)

    Article  ADS  Google Scholar 

  39. P. Schury, et al., Phys. Rev. C 75, 055801 (2007)

    Article  ADS  Google Scholar 

  40. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  41. K. Heyde, et al., Phys. Rep. 102, 291 (1983)

    Article  ADS  Google Scholar 

  42. J.L. Wood, et al., Phys. Rep. 215, 291 (1992)

    Article  Google Scholar 

  43. R. Rodríguez-Guzman, J.L. Egido, L.M. Robledo, Phys. Rev. C 69, 054319 (2004)

    Article  ADS  Google Scholar 

  44. M. Bender, et al., Phys. Rev. C 69, 064303 (2004)

    Article  ADS  Google Scholar 

  45. R. Rodríguez-Guzman, et al., Phys. Rev. C 81, 024310 (2010)

    Article  ADS  Google Scholar 

  46. J.-Y. Zhang, R.F. Casten, D.S. Brenner, Phys. Lett. B 227, 1 (1989)

    Article  ADS  Google Scholar 

  47. P. Van Isacker, D.D. Warner, D.S. Brenner, Phys. Rev. Lett. 74, 4607 (1995)

    Article  ADS  Google Scholar 

  48. R.B. Cakirli, et al., Phys. Rev. Lett. 94, 092501 (2005)

    Article  ADS  Google Scholar 

  49. R.B. Cakirli, et al., Phys. Rev. Lett. 95, 119903 (2005)

    Article  ADS  Google Scholar 

  50. W. Satula, et al., Phys. Lett. B 407, 103 (1997)

    Article  ADS  Google Scholar 

  51. D.S. Brenner, et al., Phys. Lett. B 243, 1 (1990)

    Article  ADS  Google Scholar 

  52. D. Neidherr, et al., Phys. Rev. Lett. C 80, 044323 (2009)

    ADS  Google Scholar 

  53. D. Neidherr, et al., Phys. Rev. Lett. 102, 112501 (2009)

    Article  ADS  Google Scholar 

  54. M. Dworschak, et al., Phys. Rev. Lett. 100, 072501 (2008)

    Article  ADS  Google Scholar 

  55. J. Hakala, et al., Phys. Rev. Lett. 101, 052502 (2008)

    Article  ADS  Google Scholar 

  56. J. Dilling, et al., Nucl. Instrum. Methods B 204, 492 (2003)

    Article  ADS  Google Scholar 

  57. V.L. Ryjkov, et al., Phys. Rev. Lett. 101, 012501 (2008)

    Article  ADS  Google Scholar 

  58. W. Geithner, et al., Phys. Rev. Lett. 101, 252502 (2008)

    Article  ADS  Google Scholar 

  59. D.S. Brenner, et al., Phys. Rev. C 73, 034315 (2006)

    Article  ADS  Google Scholar 

  60. M. Block, et al., Nature 463, 785 (2010)

    Article  ADS  Google Scholar 

  61. J. Jänecke, P.J. Masson, At. Data Nucl. Data Tab. 39, 265 (1988)

    Article  ADS  Google Scholar 

  62. T. Tachibana, et al., At. Data Nucl. Data Tab. 39, 251 (1988)

    Article  ADS  Google Scholar 

  63. S. Goriely, et al., Phys. Rev. C 68, 054325 (2003)

    Article  ADS  Google Scholar 

  64. M. Samyn, et al., Nucl. Phys. A 700, 024308 (2002)

    Google Scholar 

  65. F. Tondeur, et al., Phys. Rev. C 62024308 (2000)

    Article  ADS  Google Scholar 

  66. S. Goriely, N. Chamel, J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009)

    Article  ADS  Google Scholar 

  67. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. Lett. 94, 102503 (2005)

    Article  ADS  Google Scholar 

  68. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006)

    Article  ADS  Google Scholar 

  69. P. Fleischer, et al., Phys. Rev. C 70, 054321 (2004)

    Article  ADS  Google Scholar 

  70. P. Klupfel, et al., Eur. Phys. J. A 37, 343 (2008)

    Article  ADS  Google Scholar 

  71. J.-P. Delaroche, et al., Phys. Rev. C 81, 014303 (2010)

    Article  ADS  Google Scholar 

  72. S. Goriely, S. Hilaire, M. Girod, S. Peru, Phys. Rev. Lett. 102, 242501 (2009)

    Article  ADS  Google Scholar 

  73. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 78, 054312 (2008)

    Article  ADS  Google Scholar 

  74. J. Toivanen, J. Dobaczewski, M. Kortelainen, K. Mizuyama, Phys. Rev. C 78, 034306 (2008)

    Article  ADS  Google Scholar 

  75. H. Schatz, Int. J. Mass Spectrom. 251, 293 (2006)

    Article  ADS  Google Scholar 

  76. C. Rauth, et al., Phys. Rev. Lett. 100, 012501 (2008)

    Article  ADS  Google Scholar 

  77. S. Baruah et al., Phys. Rev. Lett. 101, 262501 (2008)

    Article  ADS  Google Scholar 

  78. U. Hager, et al., Phys. Rev. C 75, 064302 (2007)

    Article  ADS  Google Scholar 

  79. J.A. Clark, et al., Phys. Rev. C 75, 032801 (2007)

    Article  ADS  Google Scholar 

  80. J.A. Clark, et al., Phys. Rev. Lett. 92, 192501 (2004)

    Article  ADS  Google Scholar 

  81. D. Rodríguez, et al., Phys. Rev. Lett. 93, 161104 (2004)

    Article  ADS  Google Scholar 

  82. D. Rodríguez, et al., Nucl. Phys. A 769, 1 (2006)

    Article  ADS  Google Scholar 

  83. G. Sikler, et al., Nucl. Phys. A 763, 45 (2005)

    Article  ADS  Google Scholar 

  84. H. Schatz, et al., Phys. Rev. Lett. 86, 3471 (2001)

    Article  ADS  Google Scholar 

  85. A. Kankainen, et al., Eur. Phys. J. A 29, 271 (2006)

    Article  ADS  Google Scholar 

  86. C. Weber, et al., Phys. Rev. C 78, 054310 (2008)

    Article  ADS  Google Scholar 

  87. A. Martín, et al., Eur. Phys. J. A 34, 341 (2007)

    Article  ADS  Google Scholar 

  88. V.-V. Elomaa, et al., Eur. Phys. J. A 40, 1 (2009)

    Article  ADS  Google Scholar 

  89. M. Breitenfeldt, et al., Phys. Rev. C 80, 035805 (2009)

    Article  ADS  Google Scholar 

  90. M. Breitenfeldt, et al., Phys. Rev. C 81, 034313 (2010)

    Article  ADS  Google Scholar 

  91. E. Haetner, et al., GSI Scientific Report 2008, 134 (2009)

    Google Scholar 

  92. J.A. Clark, et al., Eur. Phys. J. A. 25, S01 629 (2005)

    Article  Google Scholar 

  93. J. Fallis, et al., Phys. Rev. C 78, 022801 (2008)

    Article  ADS  Google Scholar 

  94. J. Fallis, et al., PoS (NIC X) 044

  95. C. Fröhlich, et al., Phys. Rev. Lett. 96, 142502 (2006)

    Article  ADS  Google Scholar 

  96. J. Pruet, et al., Astrophys. J. 644, 1028 (2006)

    Article  ADS  Google Scholar 

  97. J.L. Fisker, R.D. Hoffman, J. Pruet, Astrophys. J. Lett. 690, 135 (2009)

    Article  ADS  Google Scholar 

  98. C. Mazzochi, et al., Phys. Rev. Lett. 98, 212501 (2007)

    Article  ADS  Google Scholar 

  99. V.-V. Elomaa, et al., Phys. Rev. Lett. 102, 252501 (2009)

    Article  ADS  Google Scholar 

  100. J.M. Pearson, R.C. Nayak, S. Goriely, Phys. Lett. B 387, 455 (1996)

    Article  ADS  Google Scholar 

  101. B. Sun, et al., Nucl. Phys. A 812, 1 (2008)

    Article  ADS  Google Scholar 

  102. B. Sun, et al., Phys. Rev C 78, 025806 (2008)

    Article  ADS  Google Scholar 

  103. B. Pfeiffer et al, Nucl. Phys. A 693, 282 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  104. I. Dillman, et al., Phys. Rev. Lett. 91, 162503 (2003)

    Article  ADS  Google Scholar 

  105. P. Beiersdorfer, et al., Science 300, 1558 (2003)

    Article  ADS  Google Scholar 

  106. M.A. Levine, et al., Phys. Scripta T 22, 157 (1988)

    Article  ADS  Google Scholar 

  107. P. Beiersdorfer, et al., Phys. Rev. Lett. 95, 233003 (2005)

    Article  ADS  Google Scholar 

  108. S.W. Epp, et al., Phys. Rev. Lett. 98, 183001 (2007)

    Article  ADS  Google Scholar 

  109. A.S. El-Said, et al., Nucl. Instrum. Methods B 258, 167 (2007)

    Article  ADS  Google Scholar 

  110. Crespo López-Urrutia J.R., et al., Phys. Scripta TB 92, 110 (2001)

    ADS  Google Scholar 

  111. Y. Zou, J.R. Crespo López-Urrutia, J. Ullrich, Phys. Rev. A 6742703 (2003)

    Article  ADS  Google Scholar 

  112. A.J. González Martínez, et al., Phys. Rev. Lett. 94, 203201 (2005)

    Article  ADS  Google Scholar 

  113. A.J. González Martínez, et al., Phys. Rev. A 73, 052710 (2006)

    Article  ADS  Google Scholar 

  114. Z. Harman, et al., Phys. Rev. A 73, 052711 (2006)

    Article  ADS  Google Scholar 

  115. P.H. Mokler, et al., Phys. Rev. A 77, 012506 (2008)

    Article  ADS  Google Scholar 

  116. H. Bruhns, et al., Phys. Rev. Lett. 99, 113001 (2007)

    Article  ADS  Google Scholar 

  117. I.N. Draganic, et al., Phys. Rev. Lett. 81, 183001 (2003)

    Article  ADS  Google Scholar 

  118. I.I. Tupitsyn, et al., Phys. Rev. A 68, 022511 (2003)

    Article  ADS  Google Scholar 

  119. R. Soria-Orts, et al., Phys. Rev. Lett. 97, 103002 (2006)

    Article  ADS  Google Scholar 

  120. R. Soria-Orts, et al., Phys. Rev. A 76, 052501 (2007)

    Article  ADS  Google Scholar 

  121. J.R. Crespo López-Urrutia, Can. J. Phys. 86, 111 (2008)

    Article  ADS  Google Scholar 

  122. A. Lapierre, et al., Phys. Rev. Lett. 95, 183001 (2005)

    Article  ADS  Google Scholar 

  123. W. Meissl, et al., Rev. Sci. Instrum. 77, 093303 (2006)

    Article  ADS  Google Scholar 

  124. W. Meissl, et al., Nucl. Instrum. Methods B 256, 520 (2007)

    Article  ADS  Google Scholar 

  125. A.S. El-Said, et al., Nucl. Instrum. Methods B 256, 346 (2007)

    Article  ADS  Google Scholar 

  126. G. Brenner, et al., Rev. A 75, 032504 (2007)

    Article  Google Scholar 

  127. M.C. Simon, et al., Phys. Rev. Lett. (submitted) (2009)

  128. R. Kallman, P. Palmeri, Rev. Mod. Phys. 79, 79 (2007)

    Article  ADS  Google Scholar 

  129. L. Weissman, et al., Nucl. Instrum Methods A 492, 451 (2002)

    Article  ADS  Google Scholar 

  130. A. Sobiczewski, et al., Phys. Rev. C 63, 034306 (2001)

    Article  ADS  Google Scholar 

  131. B. Grasemann, Atomic Inner Shell Processes (Academic Press, 1975)

  132. J.C. Hardy, et al., Phys. Lett. B 71, 307 (1977)

    Article  ADS  Google Scholar 

  133. http://nd2007.edpsciences.org/articles/ndata/pdf/2007/01/ndata07304.pdf

  134. H.V. Klapdor, Prog. Part. Nucl. Phys. 10, 131 (1983)

    Article  ADS  Google Scholar 

  135. H. Grawe, et al., Rep. Prog. Phys. 70, 1525 (2007)

    Article  ADS  Google Scholar 

  136. I. Hamamoto, Nucl. Phys. A 577, 19c (1994)

    Article  ADS  Google Scholar 

  137. J.C. Hardy, et al., Phys. Rev. Lett. 88, 252501 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  138. http://nd2007.edpsciences.org/articles/ndata/pdf/2007/01/ndata07758.pdf

  139. http://www.nea.fr/html/science/wpec/volume6/volume6.pdf

  140. J. Pereira, et al., Phys. Rev. C 79035806 (2009)

    Article  ADS  Google Scholar 

  141. K. Blaum, et al., Nucl. Phys. A 752, 317c (2005)

    Article  ADS  Google Scholar 

  142. K. Blaum, et al., Eur. Phys. J. A 15, 245 (2002)

    Article  ADS  Google Scholar 

  143. S. Schwarz, et al., Nucl. Instrum. Methods B 204, 507 (2003)

    Article  ADS  Google Scholar 

  144. K. Blaum, et al., Nucl. Instrum. Methods B 204, 331 (2003)

    Article  ADS  Google Scholar 

  145. K. Wendt, et al., Nucl. Phys. A 746, 47c (2004)

    Article  ADS  Google Scholar 

  146. H.-J. Kluge, et al., Phys. Scripta T 104, 167 (2003)

    Article  ADS  Google Scholar 

  147. H.-J. Kluge, K. Blaum, Nucl. Phys. A 746, 200c (2004)

    Article  ADS  Google Scholar 

  148. A.H. Wapstra, et al., Nucl. Phys. A 729, 129 (2003)

    Article  ADS  Google Scholar 

  149. E.W. Otten, Nuclear radii and moments of unstable isotopes, in Treatise on heavy-ion science, edited by D. A. Bromley (1989), p.517

  150. J. Billowes, P. Campbell, J. Phys. G 21, 707 (1995)

    Article  ADS  Google Scholar 

  151. R. Neugart, Eur. Phys. J. A 15, 35 (2002)

    Article  ADS  Google Scholar 

  152. H.-J. Kluge, W. Nörtershäuser, Spectrochim. Acta, Part B 58, 1031 (2003)

    Google Scholar 

  153. K. Heilig, A. Steudel, At. Data Nucl. Data Tab. 14, 613 (1974)

    Article  ADS  Google Scholar 

  154. K. Heilig, Hyp. Int. 24, 345 (1985)

    Article  ADS  Google Scholar 

  155. G. Fricke, K. Heilig, textitNuclear Charge Radii, in Landolt-Börnstein, Vol. 20, edited by H. Schopper (Springer Verlag, 2004)

  156. W.H. King, Isotope Shifts in Atomic Spectra (Springer Verlag, 1984)

  157. Z.C. Yan, G.W.F. Drake, Phys. Rev. A 61, 022504 (2000)

    Article  ADS  Google Scholar 

  158. Z.C. Yan, W. Nörtershäuser, G.W.F. Drake, Phys. Rev. Lett. 100, 243002 (2008)

    Article  ADS  Google Scholar 

  159. M. Puchalski, K. Pachucki, Phys. Rev. A 78, 052511 (2008)

    Article  ADS  Google Scholar 

  160. W. Geitner, Ph.D. thesis, Johannes Gutenberg University Mainz, Germany (2002)

  161. E. Arnold, et al., Phys. Lett. B 197, 311 (1987)

    Article  ADS  Google Scholar 

  162. E. Arnold, et al., Phys. Lett. B 281, 16 (1992)

    Article  ADS  Google Scholar 

  163. E. Arnold, et al., Z. Phys. A 349, 337 (1994)

    Article  ADS  Google Scholar 

  164. M. Puchalski, A.M. Moro, K. Pachucki, Phys. Rev. Lett. 97, 133001 (2006)

    Article  ADS  Google Scholar 

  165. L.B. Wang, et al., Phys. Rev. Lett. 93, 142501 (2004)

    Article  ADS  Google Scholar 

  166. P. Müller, et al., Phys. Rev. Lett. 99, 252501 (2007)

    Article  Google Scholar 

  167. G. Ewald, et al., Phys. Rev. Lett. 93, 113002 (2004)

    Article  ADS  Google Scholar 

  168. R. Sánchez, et al., Phys. Rev. Lett. 96, 033002 (2006)

    Article  ADS  Google Scholar 

  169. W. Nörtershäuser, et al., Phys. Rev. Lett. 102, 062503 (2009)

    Article  Google Scholar 

  170. M. Záková, et al., J. Phys. G 37, 055107 (2010)

    Article  Google Scholar 

  171. M. Keim, et al., Eur. Phys. J. A 8, 31 (2000)

    Article  ADS  Google Scholar 

  172. G. Savard, et al., Hyp. Int. 132, 221 (2001)

    Article  ADS  Google Scholar 

  173. H. Backe, et al., Phys. Rev. Lett. 80, 920 (1998)

    Article  ADS  Google Scholar 

  174. H. Backe, et al., Hyp. Int. 127, 35 (2000)

    Article  ADS  Google Scholar 

  175. S. Köhler, et al., Spectrochim. Acta, Part B 52, 717 (1997)

    Google Scholar 

  176. M. Sewtz, et al., Phys. Rev. Lett. 90, 163002 (2003)

    Article  ADS  Google Scholar 

  177. J. Dilling, et al., Hyp. Int. 127, 491 (2000)

    Article  ADS  Google Scholar 

  178. J. Ketelaer, et al., Nucl. Instrum. Methods A 594, 162 (2008)

    Article  ADS  Google Scholar 

  179. H. Backe, et al., Eur. Phys. J. D 45, 99 (2007)

    Article  ADS  Google Scholar 

  180. Yu. Kudryavtsev, et al., Nucl. Instrum Methods B 267, 2908 (2009)

    Article  ADS  Google Scholar 

  181. Th. Cocolis, et al., Phys. Rev. Lett. 103, 102501 (2009)

    Article  ADS  Google Scholar 

  182. A. Nieminen, et al., Phys. Rev. Lett. 88, 094801 (2002)

    Article  ADS  Google Scholar 

  183. J.M.G. Levins, et al., Phys. Rev. Lett. 82, 2476 (1999)

    Article  ADS  Google Scholar 

  184. P. Campbell, Hyp. Int. 171, 143 (2006)

    Article  ADS  Google Scholar 

  185. B. Cheal, et al., Hyp. Int. 181, 107 (2008)

    Article  ADS  Google Scholar 

  186. B. Cheal, et al., Phys. Rev. Lett. 102, 222501 (2009)

    Article  ADS  Google Scholar 

  187. P. Seelig, et al., Phys. Rev. Lett. 81, 4824 (1998)

    Article  ADS  Google Scholar 

  188. F. Herfurth, et al., Nucl. Instrum. Methods A 469, 254 (2001)

    Article  ADS  Google Scholar 

  189. A. Nieminen, et al., Nucl. Instrum. Methods A 469, 244 (2001)

    Article  ADS  Google Scholar 

  190. P. Lievens, et al., Nucl. Instrum. Methods B 70, 532 (1992)

    Article  ADS  Google Scholar 

  191. R.E. Silverans, P. Lievens, L. Vermeeren, Nucl. Instrum. Methods B 26, 591 (1987)

    Article  ADS  Google Scholar 

  192. R. Neugart, et al., Nucl. Instrum. Methods B 17, 354 (1986)

    Article  ADS  Google Scholar 

  193. P. Campbell, et al., Phys. Lett. Lett. 89, 082501 (2002)

    Article  ADS  Google Scholar 

  194. R. Neugart, Hyp. Int. 127, 101 (2000)

    Article  ADS  Google Scholar 

  195. R. Neugart, et al., Phys. Rev. Lett. 101, 132502 (2008)

    Article  ADS  Google Scholar 

  196. M.G. Payne, L. Deng, N. Thonnard, Rev. Sci. Instrum. 65, 2433 (1994)

    Article  ADS  Google Scholar 

  197. U. Köster, V.N. Fedoseyev, V.I. Mishin, Spectrochim. Acta, Part B 58, 1047 (2003)

    Google Scholar 

  198. H.-J. Kluge, et al., Laser Ion Sources in Proceedings of the Accelerated Radioactive Beams Workshop (Parksville, Canada, 1985)

  199. L. Weissman, et al., Phys. Rev. C 65, 024315 (2002)

    Article  ADS  Google Scholar 

  200. H. De Witte, et al., Phys. Rev. Lett. 98, 112502 (2007)

    Article  ADS  Google Scholar 

  201. Z.-T. Lu, K. Wendt, Rev. Sci. Instrum. 74, 1169 (2003)

    Article  ADS  Google Scholar 

  202. V.N. Fedoseyev, et al., Hyp. Int. 127, 409 (2000)

    Article  ADS  Google Scholar 

  203. T. Sonoda, et al., Nucl. Instrum. Methods B 267, 2918 (2009)

    Article  ADS  Google Scholar 

  204. J. Sauvage, et al., Hyp. Int., 129, 303 (2000)

    Article  ADS  Google Scholar 

  205. J.B. Neumayr, et al., Nucl. Instrum. Methods B 244, 489 (2006)

    Article  ADS  Google Scholar 

  206. J. Maul, et al., Nucl. Instrum. Methods B 226, 644 (2004)

    ADS  Google Scholar 

  207. F. Le Blanc, et al., Phys. Rev. Lett. 79, 2213 (1997)

    Article  ADS  Google Scholar 

  208. F. Le Blanc, et al., Phys. Rev. C 60, 054310 (1999)

    Article  ADS  Google Scholar 

  209. V.N. Fedoseyev, et al., Nucl. Instrum. Methods B 204, 353 (2003)

    Article  ADS  Google Scholar 

  210. A.N. Andreyev, et al., Eur. Phys. J. A 14, 63 (2002)

    ADS  Google Scholar 

  211. H. De Witte, et al., Phys. Rev. C, 69, 044305 (2004)

    Article  ADS  Google Scholar 

  212. S. Schwarz, et al., Nucl. Instrum. Methods B 204, 474 (2003)

    Article  ADS  Google Scholar 

  213. T. Aumann, Prog. Part. Nucl. Phys. 59, 3 (2007)

    Article  ADS  Google Scholar 

  214. X. Fléchard(private communication)

  215. T. Nakamura, et al., Opt. Commun. 205, 329 (2002)

    Article  ADS  Google Scholar 

  216. T. Nakamura, et al., Phys. Rev. A. 74, 052503 (2006)

    Article  ADS  Google Scholar 

  217. K. Okada, et al., Phys. Rev. Lett. 101, 212502 (2008)

    Article  ADS  Google Scholar 

  218. W. Quint, et al., Hyp. Int. 132, 453 (2000)

    Article  ADS  Google Scholar 

  219. O. Kester, et al., Nucl. Phys. A. 701, 71 (2002)

    Article  ADS  Google Scholar 

  220. P. Karvonen, et al., Nucl. Instrum. Methods B 266, 4794 (2008)

    Article  ADS  Google Scholar 

  221. I. Podadera-Aliseda, Ph.D. thesis, Barcelona Tech, CERN, 2006

  222. I. Podadera, et al., Eur. Phys. J. A 25, s01 743 (2005)

    Article  Google Scholar 

  223. H. Franberg, et al., Nucl. Instrum. Methods B 266, 4502 (2008)

    Article  ADS  Google Scholar 

  224. E. Mané, et al., Eur. Phys. J. A 42, 503 (2009)

    Article  ADS  Google Scholar 

  225. D. Rodríguez, Ph.D. thesis, University of Valencia, Spain (2003)

  226. G.E. Lee-Whiting, L. Yamazaki, Nucl. Instrum. Methods 94, 315 (1971)

    Article  ADS  Google Scholar 

  227. W.R. Plaß, et al., Nucl. Instrum. Methods B 266, 4560 (2008)

    Article  ADS  Google Scholar 

  228. T. Dickel, et al., GSI Scientific Report 2006, 204 (2007)

    Google Scholar 

  229. C. Scheidenberger, et al., Nucl. Instrum. Methods B 204, 119 (2003)

    Article  ADS  Google Scholar 

  230. D. Boutin, et al., GSI Scientific Report 2006, 55 (2007)

    Google Scholar 

  231. M. Petrick, et al., Nucl. Instrum. Methods B 266, 4493 (2008)

    Article  ADS  Google Scholar 

  232. S. Eliseev, et al., Int. J. Spectrom. 262, 45 (2007)

    Article  Google Scholar 

  233. M. Petrick, Ph.D. thesis, Justus-Liebig-University Gießen, Germany (2008)

  234. Z. Wang, Ph.D. thesis, Justus-Liebig-University Gießen, Germany (2006)

  235. S. Eliseev, Ph.D. thesis, Justus-Liebig-University Gießen, Germany (2004)

  236. W.R. Plaß, et al., Eur. Phys. J. Special Topics 150, 367 (2007)

    Article  ADS  Google Scholar 

  237. A. Loboda, et al., Eur. J. Mass Spectrom. 6, 531 (2000)

    Article  Google Scholar 

  238. M. Weidenmüller, et al., Hyp. Int. 146, 219 (2003)

    Article  ADS  Google Scholar 

  239. A. Simon, Bachelor Thesis, Justus-Liebig-University Gießen, Germany (2008)

  240. W.C. Wiley, I.H. McLaren, Rev. Sci. Instrum. 26, 1150 (1955)

    Article  ADS  Google Scholar 

  241. C. Jesch, Diploma Thesis, Justus-Liebig-University Gießen, Germany (2008)

  242. K. Reinheimer, Diploma Thesis, Justus-Liebig-University Gießen, Germany (2008)

  243. H. Wollnik, et al., Nucl. Instrum. Methods A 519, 373 (2004)

    Article  ADS  Google Scholar 

  244. A.N. Verentchikov, et al., Tech. Phys. 50, 73 (2005)

    Article  Google Scholar 

  245. T. Dickel, Diploma Thesis, Justus-Liebig-University Gießen, Germany (2006)

  246. N.E. Bradbury, R.A. Nielsen, Phys. Rev. 49, 388 (1936)

    Article  ADS  Google Scholar 

  247. G. Eitel, et al., Nucl. Instrum. Methods A 606, 475 (2009)

    Article  ADS  Google Scholar 

  248. C. Champagne, et al., Hyp. Int. 173, 85 (2006)

    Article  ADS  Google Scholar 

  249. J. Dilling, et al., Int. J. Mass Spectrom. 251, 198 (2006)

    Article  ADS  Google Scholar 

  250. S. Schwarz, et al., Nucl. Instrum. Methods B 266, 4466 (2008)

    Article  ADS  Google Scholar 

  251. A. Lakatos, Diploma Thesis, Johann Wolfgang Goethe-University Frankfurt, Germany (1992)

  252. R. Ferrer, Ph.D. thesis, Johannes Gutenberg University Mainz, Germany (2007)

  253. S. Rahaman, et al., Int. J. Mass Spectrom. 251, 146 (2006)

    Article  ADS  Google Scholar 

  254. V. Kolhinen, et al., Nucl. Instrum. Methods B 204, 502 (2003)

    Article  ADS  Google Scholar 

  255. V. Kolhinen, et al., Nucl. Instrum. Methods B 266, 4547 (2008)

    Article  ADS  Google Scholar 

  256. S. Ulmer, et al, Rev. Sci. Instrum. 80, 123302 (2009)

    Article  ADS  Google Scholar 

  257. K. Blaum, et al., J. Phys. B 42, 154019 (2009)

    Article  ADS  Google Scholar 

  258. F. Herfurth, et al., AIP Conf. Proc. 793, 278 (2005)

    Article  ADS  Google Scholar 

  259. G. Maero, Ph.D. thesis, Ruprecht-Karls-University Heidelberg, Germany (2008)

  260. M. Amoretti, et al., Nucl. Instrum. Methods A 518, 679 (2004)

    Article  ADS  Google Scholar 

  261. T. Yamazaki, et al., Phys. Rep. 366, 183 (2002)

    Article  ADS  Google Scholar 

  262. S.L. Rolston, G. Gabrielse, Hyp. Int. 44, 233 (1988)

    Article  ADS  Google Scholar 

  263. J. Bernard, et al., Nucl. Instrum. Methods A 532, 224 (2004)

    Article  ADS  Google Scholar 

  264. Z. Ke, et al., Hyp. Int. 173, 103 (2006)

    Article  ADS  Google Scholar 

  265. Th. Beier, et al., HITRAP Technical Design Report, GSI (2003)

  266. V.L. Ryjkov, et al., Eur. Phys. J. A 25s53 (2005)

    Article  Google Scholar 

  267. D.J. Wineland, et al., Phys. Rev. Lett. 40, 1639 (1978)

    Article  ADS  Google Scholar 

  268. W. Neuhäuser, et al., Phys. Rev. Lett. 41, 233 (1978)

    Article  ADS  Google Scholar 

  269. D.J. Larson, et al., Phys. Rev. Lett. 57, 70 (1986)

    Article  ADS  Google Scholar 

  270. L. Gruber, et al., Phys., Rev. Lett. 86, 636 (2001)

    Article  ADS  Google Scholar 

  271. S. Rainville, et al., Phys. Rev. Lett. 83, 4510 (1999)

    Article  ADS  Google Scholar 

  272. M. Bussman, et al., Int. J. Mass Spectrom. 251, 176 (2006)

    Google Scholar 

  273. M. Ubieto-Díaz, et al., Int. J. Mass Spectrom. 288, 1 (2009)

    Article  Google Scholar 

  274. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  275. G. Bollen, Lect. Notes Phys. 651, 169 (2004)

    ADS  Google Scholar 

  276. S. George, et al., Int. J. Mass Spectrom. 264, 110 (2007)

    Article  ADS  Google Scholar 

  277. M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)

    Article  ADS  Google Scholar 

  278. S. George, et al., Eur. Phys. Lett. 82, 50005 (2008)

    Article  ADS  Google Scholar 

  279. L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  280. R. Ringle, et al., Int. J. Mass Spectrom. 263, 38 (2007)

    Article  ADS  Google Scholar 

  281. A. Kellerbauer, et al., Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

  282. L.S. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982)

    Article  ADS  Google Scholar 

  283. G. Gabrielse, Phys. Rev. Lett. 102, 172501 (2009)

    Article  ADS  Google Scholar 

  284. G. Gabrielse, Int. J. Mass Spectrom. 279, 107 (2009)

    Article  ADS  Google Scholar 

  285. M. König, et al., Int. J. Mass Spectrom. Ion Processes 142, 95 (1995)

    Article  ADS  Google Scholar 

  286. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  287. J.L. Wiza, Nucl. Instrum. Methods A 162, 587 (1979)

    Article  Google Scholar 

  288. H.C. Straub, et al., Rev. Sci. Instrum. 70, 4238 (1999)

    Article  ADS  Google Scholar 

  289. C. Yazidjian, et al., Hyp. Int. 173, 181 (2006)

    Article  ADS  Google Scholar 

  290. www.detechinc.com

  291. A.G. Marshall, Int. J. Mass Spectrom. 200, 331 (2000)

    Article  Google Scholar 

  292. S. Agostinelli, et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  293. J.L. Wood, et al., Nucl. Phys. A 651, 323 (1999)

    Article  ADS  Google Scholar 

  294. P. Van Duppen, et al., Phys. Rev. Lett. 52, 1974 (1984)

    Article  ADS  Google Scholar 

  295. P. Van Duppen, et al., Phys. Rev. C 35, 1861 (1987)

    Article  ADS  Google Scholar 

  296. P. Dendooven, et al., Phys. Lett. B 226, 27 (1989)

    Article  ADS  Google Scholar 

  297. N. Bijnens, et al., Z. Phys. A 356, 3 (1996)

    Article  ADS  Google Scholar 

  298. P. Van Duppen, et al., Phys. Lett. B 154, 354 (1985)

    Article  ADS  Google Scholar 

  299. J. Wauters, et al., Phys. Rev. Lett. 72, 1329 (1994)

    Article  ADS  Google Scholar 

  300. A.N. Andreyev, et al., Eur. Phys. J. A 6, 381 (1999)

    Article  ADS  Google Scholar 

  301. A.N. Andreyev, et al., Nature 405, 430 (2000)

    Article  ADS  Google Scholar 

  302. A.N. Andreyev, et al., Nucl. Phys. A 682, 482c (2001)

    Article  ADS  Google Scholar 

  303. J. Wauters, et al., Z. Phys. A 345, 21 (1993)

    Article  ADS  Google Scholar 

  304. J. Wauters, et al., Phys. Rev. C 50, 2768 (1994)

    Article  ADS  Google Scholar 

  305. http://nd2007.edpsciences.org/articles/ndata/pdf/2007/01/ndata07707.pdf

  306. P.T. Hosmer, Ph.D. thesis, MSU NSCL, United States (2005) http://www.nscl.msu.edu/ourlab/publications/download/Hosmer2005_207.pdf

  307. A. Buta, et al., Nucl. Instrum. Methods A 455, 412 (2000)

    Article  ADS  Google Scholar 

  308. D. Dohl, Int. J. Mass Spectrom. 200, 3 (2000)

    Article  Google Scholar 

  309. E. Kugler, Hyp. Int. 129, 23 (2000)

    Article  ADS  Google Scholar 

  310. B. Cheal, et al., Phys. Lett. B 645, 133 (2007)

    Article  ADS  Google Scholar 

  311. D. Manura: SIMION 7.0 user program to create non-repeating waveform of line segments. www.simion.com/info User Programming (2006)

  312. M. Kowalska, et al., Phys. Rev. C 77, 034307 (2008)

    Article  ADS  Google Scholar 

  313. D. Borremans, et al., Phys. Rev. C 72, 044309 (2005)

    Article  ADS  Google Scholar 

  314. G. Neyens, et al., Phys. Rev. Lett. 94, 022501 (2005)

    Article  ADS  Google Scholar 

  315. D. Yordanov, et al., Phys. Rev. Lett. 99, 212501 (2007)

    Article  ADS  Google Scholar 

  316. A. Krieger, Diploma Thesis, Johannes Gutenberg University Mainz, Germany (2008)

  317. http://www.lac.u-psud.fr/-Atlas-de-l-iode-et-du-tellure-

  318. T. Thümmler, New J. Phys. 11, 103007 (2009)

    Article  ADS  Google Scholar 

  319. H.-J. Kluge, et al., Adv. Quantum Chem. 53, 83 (2008)

    Article  ADS  Google Scholar 

  320. C. Rauth, et al., Eur. Phys. J. D 45, 47 (2007)

    Article  ADS  Google Scholar 

  321. M. Mukherjee, et al., Eur. Phys. J. A 35, 1 (2008)

    Article  ADS  Google Scholar 

  322. A. Blazevic, et al., GSI Scientific Report 2007, 315 (2008)

    Google Scholar 

  323. D. Beck, et al., Nucl. Instrum. Methods A 527, 567 (2004)

    Article  ADS  Google Scholar 

  324. D. Beck, H. Brand, Proc. SEIFruhjahrstatung 2007 Rossendorf, edited by F. Wulf, Germany, ISSN 0936-0891 191 (2007)

  325. R. Jamal, H. Pichlik, LabVIEW Applications, Solutions (Prentice Hall, 1999)

  326. H. Hahn, U. Thiemer, GSI Scientific Report 2004, 343 (2005)

    Google Scholar 

  327. H.G. Essel, et al., IEEE Trans. Nucl. Sci., 43, 132 (1996)

    Article  ADS  Google Scholar 

  328. H.G. Essel, N. Kurz, IEEE Trans. Nucl. Sci. 47, 337 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rodríguez.

Additional information

Spokesperson MATS collaboration.

Spokesperson LaSpec collaboration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez, D., Blaum, K., Nörtershäuser, W. et al. MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR. Eur. Phys. J. Spec. Top. 183, 1–123 (2010). https://doi.org/10.1140/epjst/e2010-01231-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2010-01231-2

Keywords

Navigation