Skip to main content
Log in

Solvothermal synthesis of BiVO4/WO3 heterostructures and their applicability towards electrochemical water oxidation reactions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Bismuth vanadate (BiVO4) and its heterostructures with tungstate (WO3) were prepared by solvothermal technique. Phase purity of these compounds was analysed by collecting powder. X-ray diffraction data revealed the co-existence of both BiVO4 and WO3 phases. Transmission electron microscopic measurements on these samples revealed that the average particles sizes of these heterostructures are in the submicron range. Optical band gap is found in the range of 2.30 to 2.45 eV by using UV-visible spectrometer. Optical spectra reveal two distinct absorption edges corresponding to both existing phases. Electrochemical activity of BiVO4 and BiVO4/WO3 heterostructures was studied using electrochemical workstation for applicability of oxygen evolution reaction (OER). These results indicate that the electrochemical activity was improved by forming heterostructures as compared with pristine compounds. From the Tafel slope analysis, it was found that the second electron transfer step is the rate determining step in OER mechanism in BiVO4/WO3 heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.-L. Wang, D. Xu, J.-J. Xu, X.-B. Zhang, Chem. Soc. Rev. 43, 7746 (2014)

    Article  Google Scholar 

  2. M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z.L. Wang, Nano Energy 3, 136 (2017)

    Article  Google Scholar 

  3. Y. Matsumoto, E. Sato, Mater. Chem. Phys. 14, 397 (1986)

    Article  Google Scholar 

  4. M.-M. Wohlfahrt, J. Heitbaum, J. Electroanal. Chem. Interf. Electrochem. 237, 251 (1987)

    Article  Google Scholar 

  5. M. Musiani, F. Furlanetto, R. Bertoncello, J. Electroanal. Chem. 465, 160 (1995)

    Article  Google Scholar 

  6. C.D. Pauli, S. Trasatti, J. Electroanal. Chem. 538, 145 (2002)

    Article  Google Scholar 

  7. A. Singh, L. Spiccia, Coord. Chem. Rev. 257, 2607 (2013)

    Article  Google Scholar 

  8. I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J. Mayrhofer, Angew. Chem. Int. Ed. 53, 102 (2004)

    Article  Google Scholar 

  9. L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, J. Am. Chem. Soc. 134, 17253 (2012)

    Article  Google Scholar 

  10. J.A. Seabold, K.-S. Choi, J. Am. Chem. Soc. 134, 2186 (2012)

    Article  Google Scholar 

  11. J. Yang, D. Wang, X. Zhou, C. Li, Chem. Eur. J. 19, 1320 (2013)

    Article  Google Scholar 

  12. T.W. Kim, K.-S. Choi, Science 343, 990 (2014)

    Article  ADS  Google Scholar 

  13. S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 13, 4624 (2001)

    Article  Google Scholar 

  14. J. Yu, A. Kudo, Adv. Funct. Mater. 16, 2163 (2006)

    Article  Google Scholar 

  15. S.J. Moniz, J. Zhu, J. Tang, Adv. Energy Mater. 4, 1301590 (2014)

    Article  Google Scholar 

  16. D. Eisenberg, H.S. Ahn, A.J. Bard, J. Am. Chem. Soc. 136, 14011 (2014)

    Article  Google Scholar 

  17. J.H. Kim, J.S. Lee, Energy Environ. Focus 3, 339 (2014)

    Article  Google Scholar 

  18. I. Grigioni, K.G. Stamplecoskie, E. Selli, P.V. Kamat, J. Phys. Chem. C 119, 20792 (2015)

    Article  Google Scholar 

  19. P. Chatchai, Y. Murakami, S.-Y. Kishioka, A.Y. Nosaka, Y. Nosaka, Electrochim. Acta 54, 1147 (2009)

    Article  Google Scholar 

  20. Z. Meng, A. Fujii, T. Hashishin, N. Wada, T. Sanada, J. Tamaki, K. Kojima, H. Haneoka, T. Suzuki, J. Mater. Chem. C 3, 1134 (2015)

    Article  Google Scholar 

  21. V. Sivakumar, R. Suresh, K. Giribabu, V. Narayanan, J. Cogent. Chem. 1, 1074647 (2015)

    Google Scholar 

  22. Y. Hu, D. Li, Y. Zheng, W. Chen, Y. He, Y. Shao, X. Fu, G. Xiao, J. Appl. Catal. B: Environ. 104, 30 (2001)

    Article  Google Scholar 

  23. W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, J. Cui, ACS Appl. Mater. Interf. 2, 2385 (2010)

    Article  Google Scholar 

  24. Y. Meng, W. Song, H. Huang, Z. Ren, S.-Y. Chen, S.L. Suib, J. Am. Chem. Soc. 136, 11452 (2014)

    Article  Google Scholar 

  25. E. Guerrini, H. Chen, S. Trasatti, J. Solid State Electrochem. 11, 939 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Ramarao.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saraswathi, P., Ramarao, S.D., Kumar, R.A. et al. Solvothermal synthesis of BiVO4/WO3 heterostructures and their applicability towards electrochemical water oxidation reactions. Eur. Phys. J. Plus 134, 186 (2019). https://doi.org/10.1140/epjp/i2019-12629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12629-7

Navigation