Skip to main content
Log in

Multicomponent nonlinear Schrödinger equation in 2+1 dimensions, its Darboux transformation and soliton solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In nonlinear media, propagation of pulses is generally described by multicomponent fields. In this paper, a vector (or multicomponent) (2 + 1)-dimensional nonlinear Scrödinger (NLS) equation is studied. By generalizing \( 2 \times 2\) Lax matrices to \( 2^{N} \times 2^{N}\), we derive the Lax pair for the multicomponent (2 + 1)-dimensional NLS equation. We construct the Darboux matrix for the system and obtain K-soliton solutions and express these solutions in terms of quasideterminants. Within the framework of quasideterminants and symbolic computation, we compute 1-, 2- and 3-soliton solutions for (2 + 1)-dimensional and coupled (2 + 1)-dimensional NLS equations. Graphically, it has been shown that solitons of the (2 + 1)-dimensional and coupled (2 + 1)-dimensional NLS equations propagate with different velocities in the xt-, yt-, and xy-plane, but keeping the amplitude and width unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004)

  2. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer-Verlag, Berlin, 1987)

  3. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, 2004)

  4. V.B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)

  5. C. Rogers, W.K. Schief, Bäcklund and Darboux transformations: geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics (Cambridge University Press, Cambridge, 2002)

  6. T. Xu, C. Liu, F. Qi, C. Li, D. Meng, J. Nonlinear Math. Phys. 24, 116 (2017)

    Article  MathSciNet  Google Scholar 

  7. S.Y. Lou, H. Ruan, J. Phys. A 34, 305 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. B.G. Konopelchenko, C. Rogers, J. Math. Phys. 34, 214 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. R. Radha, M. Lakshmanan, J. Phys. A 29, 1551 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. I.A.B. Strachan, Inverse Prob. 8, L21 (1992)

    Article  ADS  Google Scholar 

  11. I.A.B. Strachan, J. Math. Phys. 34, 243 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Myrzakulov, S. Vijayalakshmi, G.N. Nugmanova, M. Lakshmanan, Phys. Lett. A 233, 391 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. O.I. Oleg, A. Sergyeyev, J. Geom. Phys. 85, 40 (2014)

    Article  MathSciNet  Google Scholar 

  14. A. Sergyeyev, J. Math. Anal. Appl. 454, 468 (2017)

    Article  MathSciNet  Google Scholar 

  15. A. Sergyeyev, Lett. Math. Phys. 108, 359 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001)

  17. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, 2003)

  18. A. Hasegawa, Optical Solitons in Fibers (Springer, 1990)

  19. A. Degasperis, S. Lombardo, J. Phys. A 40, 961 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Q.H. Park, H.J. Shin, Phys. Rev. E 59, 2373 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  21. H.Q. Zhang, T. Xu, J. Li, B. Tian, Phys. Rev. E 77, 026605 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. T. Xu, P.P. Xina, Y. Zhang, Juan Li, Z. Naturforsch. 68a, 261 (2013)

    Article  Google Scholar 

  23. M. Li, T. Xu, Phys. Rev. E 91, 033202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. H.W.A. Riaz, M. Hassan, Commun. Nonlinear Sci. Numer. Simul. 61, 71 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. H.W.A. Riaz, M. Hassan, J. Phys. Commun. 2, 025005 (2018)

    Article  Google Scholar 

  26. H.W.A. Riaz, M. Hassan, Mod. Phys. Lett. A 33, 1850086 (2018)

    Article  ADS  Google Scholar 

  27. I. Gelfand, V. Retakh, Funct. Anal. Appl. 25, 91 (1991)

    Article  MathSciNet  Google Scholar 

  28. I.M. Gelfand, S. Gelfand, V.M. Retakh, R.L. Wilson, Adv. Math. 193, 56 (2005)

    Article  MathSciNet  Google Scholar 

  29. D. Krob, B. Leclerc, Commun. Math. Phys. 169, 1 (1995)

    Article  ADS  Google Scholar 

  30. T. Suzuki, Adv. Math. 217, 2141 (2008)

    Article  MathSciNet  Google Scholar 

  31. C.R. Gilson, J.J.C. Nimmo, J. Phys. A 40, 3839 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. H.W.A. Riaz, M. Hassan, Commun. Nonlinear Sci. Numer. Simul. 54, 416 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. H.W.A. Riaz, M. Hassan, Theor. Math. Phys. 195, 665 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wajahat A. Riaz.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, H.W.A. Multicomponent nonlinear Schrödinger equation in 2+1 dimensions, its Darboux transformation and soliton solutions. Eur. Phys. J. Plus 134, 222 (2019). https://doi.org/10.1140/epjp/i2019-12597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12597-x

Navigation