Skip to main content
Log in

Electric dipole moment from QCD \( \theta\) and how it vanishes for mixed states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In a previous paper (A.P. Balachandran et al., JHEP 05, 012 (2012)), we studied the \( \eta{^\prime}\) mass and formulated its chirally symmetric coupling to fermions which induces electric dipole moment (EDM) maintaining chiral symmetry throughout in contrast to earlier works. Here we calculate the EDM to one loop. It is finite, having no ultraviolet divergence while its infrared divergence is canceled by soft photon emission processes exactly as for \(\ensuremath \theta=0\) . The coupling does not lead to new divergences (not present for \(\ensuremath \cos\theta=1\) in soft photon processes either. Furthermore, as was argued previously (A.P. Balachandran et al., JHEP 05, 012 (2012)), the EDM vanishes if suitable mixed quantum states are used. This means that in a quantum theory based on such mixed states, a strong bound on EDM will not necessarily lead to a strong bound such as \(\ensuremath \vert\sin\theta\vert\lesssim10^{-11}\) . This fact eliminates the need to fine tune \( \theta\) or for the axion field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Baluni, Phys. Rev. D 19, 2227 (1979)

    Article  ADS  Google Scholar 

  2. G. Veneziano, Nucl. Phys. B 159, 213 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  3. R.J. Crewther, P. Di Vecchia, G. Veneziano, E. Witten, Phys. Lett. B 88, 123 (1979) 91

    Article  ADS  Google Scholar 

  4. E. Witten, Ann. Phys. 128, 363 (1980)

    Article  ADS  Google Scholar 

  5. S. Dar, hep-ph/0008248

  6. M. Pospelov, A. Ritz, Ann. Phys. 318, 119 (2005) hep-ph/0504231

    Article  ADS  MATH  Google Scholar 

  7. A.P. Balachandran, A.R. Queiroz, Phys. Rev. D 85, 025017 (2012) arXiv:1108.3898 [hep-th]

    Article  ADS  Google Scholar 

  8. A.P. Balachandran, T.R. Govindarajan, A.R. de Queiroz, JHEP 05, 012 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  9. B. Czech, J.L. Karczmarek, F. Nogueira, M. Van Raamsdonk, arXiv:1206.1323 [hep-th]

  10. A.P. Balachandran, A.R. de Queiroz, JHEP 11, 126 (2011) arXiv:1109.5290 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  11. R.A. Bertlmann, Anomalies in quantum field theory, in International series of monographs on physics, Vol. 91 (Clarendon, Oxford, 1996) p. 566

  12. J.A. Harvey, hep-th/0509097

  13. C. Rosenzweig, J. Schechter, C.G. Trahern, Phys. Rev. D 21, 3388 (1980)

    Article  ADS  Google Scholar 

  14. A. Aurilia, Y. Takahashi, P.K. Townsend, Phys. Lett. B 95, 265 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  15. K. Kawarabayashi, N. Ohta, Nucl. Phys. B 175, 477 (1980)

    Article  ADS  Google Scholar 

  16. K. Kawarabayashi, N. Ohta, Prog. Theor. Phys. 66, 1789 (1981)

    Article  ADS  Google Scholar 

  17. N. Ohta, Prog. Theor. Phys. 66, 1408 (1981) 67

    Article  ADS  MATH  Google Scholar 

  18. S. Weinberg, The Quantum theory of fields, Vol. 1: Foundations (Cambridge University Press, 1995)

  19. J.S. Schwinger, Phys. Rev. 73, 416 (1948)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A.P. Balachandran, T.R. Govindarajan, A.R. Queiroz, A.F. Reyes-Lega, arXiv:1205.2882 [quant-ph]

  21. A.P. Balachandran, T.R. Govindarajan, A.R. Queiroz, A.F. Reyes-Lega, in preparation

  22. A.P. Balachandran, G.Marmo, N.Mukunda, J.S. Nilsson, E.C.G. Sudarshan, F.Zaccaria, Phys. Rev. D 29, 2919 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  23. A.P. Balachandran, G. Marmo, N. Mukunda, J.S. Nilsson, E.C.G. Sudarshan, F. Zaccaria, Phys. Rev. D 29, 2936 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  24. C.Y. Wong, Introduction to high-energy heavy ion collisions (World Scientific, Singapore, 1994)

  25. F.C. Khanna, A.P.C. Malbouisson, J.M.C. Malbouisson, A.R. Santana, Thermal Quantum Field Theory: Algebraic Aspects and Applications (World Scientific, Singapore, 2009)

  26. G. Bimonte, New J. Phys. 9, 281 (2007)

    Article  Google Scholar 

  27. G. Bimonte et al., Nucl. Phys. B 726, 441 (2005) hep-th/0505200

    Article  ADS  MATH  Google Scholar 

  28. G. Bimonte et al., Phys. Rev. Lett 94, 180402 (2005) quant-ph/0406188

    Article  ADS  Google Scholar 

  29. A.P. Balachandran, G. Marmo, B.S. Skagerstam, A. Stern, Classical topology and quantum states (World Scientific Publishing Co Inc, 1991)

  30. N.D. Hari Dass, S. Kalyana Rama, B. Sathiapalan, Int. J. Mod. Phys. A 18, 2947 (2003)

    Article  ADS  MATH  Google Scholar 

  31. A.P. Balachandran, A. Simoni, D.M. Witt, Int. J. Mod. Phys. A 7, 2087 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balachandran, A.P., Govindarajan, T.R. & de Queiroz, A.R. Electric dipole moment from QCD \( \theta\) and how it vanishes for mixed states. Eur. Phys. J. Plus 127, 118 (2012). https://doi.org/10.1140/epjp/i2012-12118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2012-12118-7

Keywords

Navigation