Skip to main content
Log in

Theoretical and experimental study of the nanoparticle-driven blue phase stabilisation

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have studied theoretically and experimentally the effects of various types of nanoparticles (NPs) on the temperature stability range \( \Delta\) T BP of liquid-crystalline (LC) blue phases. Using a mesoscopic Landau-de Gennes type approach we obtain that the defect core replacement (DCR) mechanism yields in the diluted regime \( \Delta\) T BP(x) \( \propto\) 1/(1 - xb) , where x stands for the concentration of NPs and b is a constant. Our calculations suggest that the DCR mechanism is efficient if a local NP environment resembles the core structure of disclinations, which represent the characteristic property of BP structures. These predictions are in line with high-resolution ac calorimetry and optical polarising microscopy experiments using the CE8 LC and CdSe or aerosil NPs. In mixtures with CdSe NPs of 3.5nm diameter and hydrophobic coating the BPIII stability range has been extended up to 20K. On the contrary, the effect of aerosil silica nanoparticles of 7.0nm diameter and hydrophilic coating is very weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Coats, P. Pieranski, Phys. Lett. A 45, 115 (1973)

    Article  ADS  Google Scholar 

  2. P.J. Collings, J.R. McColl, J. Chem. Phys. 69, 3371 (1978)

    Article  ADS  Google Scholar 

  3. T. Blümel, P.J. Collings, H. Onusseit, H. Stegemeyer, Chem. Phys. Lett. 116, 30 (1985)

    Article  Google Scholar 

  4. P.H. Keyes, MRS Bull. 16, 32 (1991)

    Google Scholar 

  5. A. Leforestier, F. Livolant, Liq. Cryst. 17, 651 (1994)

    Article  Google Scholar 

  6. J. Charvolin, J.F. Sadoc, Eur. Phys. J. E 25, 335 (2008)

    Article  Google Scholar 

  7. P.P. Crooker, Mol. Cryst. Liq. Cryst. 98, 31 (1983)

    Article  Google Scholar 

  8. R. Collings, Phys. Rev. A 30, 30 (1984)

    Article  Google Scholar 

  9. R. Barbet-Massin, P.E. Cladis, P. Pieranski, Phys. Rev. A 30, 1161 (1984)

    Article  ADS  Google Scholar 

  10. E. Dubois-Violette, B. Pansu, P. Pieranski, Mol. Cryst. Liq. Cryst. 192, 221 (1990)

    Article  Google Scholar 

  11. E.P. Koistinen, P.H. Keyes, Phys. Rev. Lett. 74, 4460 (1995)

    Article  ADS  Google Scholar 

  12. W. Cao, A. Munoz, P. Palffy-Muhoray, B. Taheri, Nature Mater. 1, 111 (2002)

    Article  ADS  Google Scholar 

  13. Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 17, 96 (2005)

    Article  Google Scholar 

  14. S.M. Morris, A.D. Ford, C. Gillspie, M.N. Pivnenko, O. Hadeler, H.J. Coles, J. Soc. Inf. Disp. 14, 565 (2006)

    Article  Google Scholar 

  15. H. Iwamochi, A. Yoshizawa, Appl. Phys. Express 1, 111801 (2008)

    Article  ADS  Google Scholar 

  16. H.Y. Liu, C.T. Wang, C.Y. Hsu, T.H. Lin, J.H. Liu, Appl. Phys. Lett. 96, 121103 (2010)

    Article  ADS  Google Scholar 

  17. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nature Mater. 1, 64 (2002)

    Article  ADS  Google Scholar 

  18. M. Nakata, Y. Takanishi, J. Watanabe, H. Takezoe, Phys. Rev. E 68, 041710 (2003)

    Article  ADS  Google Scholar 

  19. H.J. Coles, M.N. Pivnenko, Nature 436, 997 (2005)

    Article  ADS  Google Scholar 

  20. G.P. Alexander, J.M. Yeomans, Phys. Rev. E 74, 74 (2006)

    Article  Google Scholar 

  21. A. Yoshizawa, H. Iwamochi, S. Segawa, M. Sato, Liq. Cryst. 34, 1039 (2007)

    Article  Google Scholar 

  22. T. Noma, M. Ojima, H. Asagi, Y. Kawahira, A. Fujii, M. Ozaki, J. Surf. Sci. Nanotech. 6, 17 (2008)

    Article  Google Scholar 

  23. H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, M. Ozaki, Appl. Phys. Express 2, 121501 (2009)

    Article  ADS  Google Scholar 

  24. E. Karatairi, B. Rožič, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, C. Glorieux, J. Thoen, S. Kralj, Phys. Rev. E 81, 041703 (2010)

    Article  ADS  Google Scholar 

  25. M. Ravnik, G.P. Alexander, J.M. Yeomans, S. Zumer, Faraday Discuss. 144, 159 (2010)

    Article  ADS  Google Scholar 

  26. J. Fukuda, S. Zumer, Phys. Rev. Lett. 104, 017801 (2010)

    Article  ADS  Google Scholar 

  27. H. Iwamochi, T. Hirose, Y. Kogawa, A. Yoshizawa, Chem. Lett. 39, 170 (2010)

    Article  Google Scholar 

  28. F. Castles, S.M. Morris, E.M. Terentjev, H.J. Coles, Faraday Discuss. 104, 157801 (2010)

    Google Scholar 

  29. S. Taushanoff, K. Van Le, J. Williams, R.J. Twieg, B.K. Sasashiva, H. Takezoe, A. Jakli, J. Mater. Chem. 20, 5893 (2010)

    Article  Google Scholar 

  30. K.-M. Chen, S. Gauza, H. Xianyu, T.-T. Wu, J. Display Technol. 6, 49 (2010)

    Article  ADS  Google Scholar 

  31. G. Cordoyiannis, P. Losada-Pérez, C.S.P. Tripathi, B. Rožič, U. Tkalec, V. Tzitzios, E. Karatairi, G. Nounesis, Z. Kutnjak, I. Muševič, C. Glorieux, S. Kralj, J. Thoen, Liq. Cryst. 37, 1419 (2010)

    Article  Google Scholar 

  32. H.S. Kitzerow, H. Schmid, A. Ranft, A. Heppke, R.A.M. Hikmet, J. Lub, Liq. Cryst. 14, 911 (1993)

    Article  Google Scholar 

  33. V. Tzitzios, V. Georgakilas, I. Zafiropoulou, N. Boukos, G. Basina, D. Niarchos, D. Petridis, J. Nanosci. Nanotechnol. 8, 3117 (2008)

    Article  Google Scholar 

  34. G.S. Iannacchione, C.W. Garland, J.T. Mang, T.P. Rieker, Phys. Rev. E 58, 5966 (1998)

    Article  ADS  Google Scholar 

  35. J. Barre, A.R. Bishop, T. Lookman, A. Saxena, Phys. Rev. Lett. 94, 208701 (2005)

    Article  ADS  Google Scholar 

  36. H. Haga, C.W. Garland, Phys. Rev. E 56, 3044 (1997)

    Article  ADS  Google Scholar 

  37. H. Yao, K. Ema, C.W. Garland, Rev. Sci. Instrum. 69, 172 (1998)

    Article  ADS  Google Scholar 

  38. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993)

  39. P. Kaiser, W. Wiese, S. Hess, J. Non-Equilib. Thermodyn. 17, 153 (1992)

    Article  MATH  ADS  Google Scholar 

  40. P. Poulin, V.A. Raghunathan, P. Richetti, D. Doux, J. Phys. II 4, 1557 (1994)

    Article  Google Scholar 

  41. E.G. Virga, Variational Theories for Liquid Crystals (Chapman Hall, London, 1994)

  42. A. Matsuyama, R.L.M. Evans, M.E. Cates, Phys. Rev. E 61, 2977 (2000)

    Article  ADS  Google Scholar 

  43. P.J. Flory, Proc. R. Soc. London, Ser. A 243, 73 (1956)

    ADS  Google Scholar 

  44. M. Nobili, G. Durand, Phys. Rev. A 46, R6174 (1992)

    Article  ADS  Google Scholar 

  45. V.J. Anderson, E.M. Terentjev, P. Petrov, S.P. Meeker, J. Crain, W.C.K. Poon, Eur. Phys. J. E 4, 11 (2001)

    Article  Google Scholar 

  46. V. Popa-Nita, P. van der Schoot, S. Kralj, Eur. Phys. J. E 21, 189 (2006)

    Article  Google Scholar 

  47. S. Kralj, Z. Bradač, V. Popa-Nita, J. Phys.: Condens. Matter 20, 244112 (2008)

    Article  ADS  Google Scholar 

  48. S. Kralj, R. Rosso, E.G. Virga, Phys. Rev. E 78, 031701 (2008)

    Article  ADS  Google Scholar 

  49. S. Kralj, R. Rosso, E.G. Virga, Phys. Rev. E 81, 021702 (2010)

    Article  ADS  Google Scholar 

  50. S. Kralj, E.G. Virga, S. Zumer, Phys. Rev. E 60, 1858 (1999)

    Article  ADS  Google Scholar 

  51. S. Kralj, S. Zumer, Phys. Rev. A 45, 2461 (1992)

    Article  ADS  Google Scholar 

  52. F. Bisi, E.C. Gartland, R. Rosso, E.G. Virga, Phys. Rev. E 68, 021707 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cordoyiannis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rožič, B., Tzitzios, V., Karatairi, E. et al. Theoretical and experimental study of the nanoparticle-driven blue phase stabilisation. Eur. Phys. J. E 34, 17 (2011). https://doi.org/10.1140/epje/i2011-11017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11017-8

Keywords

Navigation