Skip to main content
Log in

Production properties of \(K^\star(892)^\pm\) vector mesons and their spin alignment as measured in the NOMAD experiment

  • Experimental Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

First measurements of \(K^\star(892)^\pm\) mesons production properties and their spin alignment in \(\nu_\mu\) charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For \({K^\star}^+\) and \({K^\star}^-\) mesons produced in \(\nu_\mu\) CC interactions and decaying into \(K^0 \pi^\pm\) we have found the following yields per event: \((2.6\pm0.2(\text{stat.})\pm0.2(\text{syst.}))\%\) and \((1.6\pm0.1(\text{stat.})\pm0.1(\text{syst.}))\%\) respectively, while for the \({K^\star}^+\) and \({K^\star}^-\) mesons produced in \(\nu\text{NC}\) interactions the corresponding yields per event are: \((2.5\pm0.3(\text{stat.})\pm0.3(\text{syst.}))\%\) and \((1.0\pm0.3(\text{stat.})\pm0.2(\text{syst.}))\%\). The results obtained for the \(\rho_{00}\) parameter, \(0.40\pm0.06(\text{stat.})\pm0.03(\text{syst.})\) and \(0.28\pm0.07(\text{stat.})\pm0.03(\text{syst.})\) for \(K^\star(892)^+\) and \(K^\star(892)^-\) produced in \(\nu_\mu\) CC interactions, are compared to theoretical predictions tuned on LEP measurements in \(e^+e^-\) annihilation at the \(Z^0\) pole. For \(K^\star(892)^+\) mesons produced in \(\nu\text{NC}\) interactions the measured \(\rho_{00}\) parameter is \(0.66\pm0.10(\text{stat.})\pm0.05(\text{syst.})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NOMAD Collaboration, P. Astier et al., Nucl. Phys. B 621, 3 (2001)

    Article  Google Scholar 

  2. NOMAD Collaboration, P. Astier et al., Nucl. Phys. B 588, 3 (2000)

    Article  Google Scholar 

  3. NOMAD Collaboration, P. Astier et al., Nucl. Phys. B 605, 3 (2001)

    Article  ADS  Google Scholar 

  4. NOMAD Collaboration, D. Naumov et al., Nucl. Phys. B 700, 51 (2004)

    Article  ADS  Google Scholar 

  5. B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Phys. Rep. 97, 31 (1983); T. Sjöstrand et al., Int. J. Mod. Phys A 3, 751 (1988)

    Article  ADS  Google Scholar 

  6. C. Bourrely, E. Leader, J. Soffer, Phys. Rep. 59, 95 (1980)

    Article  ADS  Google Scholar 

  7. J. F. Donoghue, Phys. Rev. D 17,2922 (1978)

    Article  ADS  Google Scholar 

  8. ALEPH Collaboration, D. Buskulic et al., Z. Phys. C 69,393 (1995)

    Article  Google Scholar 

  9. DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 406, (1997) 271; DELPHI Collaboration, P. Abreu et al., Z. Phys. C 68, 353 (1995)

    Article  Google Scholar 

  10. OPAL Collaboration, K. Ackerstaff et al., Phys. Lett. B 412, 210 (1997); OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 16, 61 (2000); OPAL Collaboration, K. Ackerstaff et al., Z. Phys. C 74, 437 (1997)

    Article  ADS  Google Scholar 

  11. EXCHARM Collaboration, A.N. Aleev et al., JINR preprint, E1-99-178 (1999)

  12. BEBC WA59 Collaboration, W. Wittek et al., Phys. Lett. B 187, 179 (1987)

    Article  Google Scholar 

  13. J. F. Donoghue, Phys. Rev. D 19, 2806 (1979)

    Article  ADS  Google Scholar 

  14. A.V. Efremov, O.V. Teryaev, Sov. J. Nucl. Phys. 36, 557 (1982); A.V. Efremov, O.V. Teryaev, JINR preprint, P2-82-832, (1982)

    Google Scholar 

  15. Xu Qing-hua, Liu Chun-xiu, Liang Zuo-tang, Phys. Rev. D 63, 111301 (2001)

    Article  ADS  Google Scholar 

  16. Xu Qing-hua, Liang Zuo-tang, hep-ph/0205291; Xu Qing-hua, Liang Zuo-tang, Phys. Rev. D 66, 017301 (2002)

    Article  ADS  Google Scholar 

  17. NOMAD Collaboration, J. Altegoer et al., Nucl. Instr. and Meth. A 404, 96 (1998)

    Article  Google Scholar 

  18. NOMAD Collaboration, J. Altegoer et al., Phys. Lett. B 431, 219 (1998); NOMAD Collaboration, P. Astier et al., Phys. Lett. B 453, 169 (1999); NOMAD Collaboration, P. Astier et al., Phys. Lett. B 483, 387 (2000); NOMAD Collaboration, P. Astier et al., Nucl. Phys. B 611, 3 (2001)

    Article  ADS  Google Scholar 

  19. NOMAD Collaboration, P. Astier et al. Phys. Lett. B 570, 19 (2003)

    ADS  Google Scholar 

  20. G. Ingelman, LEPTO version 6.1, TSL-ISV-92-0065 (1992); G. Ingelman, A. Edin, J. Rathsman, LEPTO version 6.5, Comp. Phys. Comm. 101, 108 (1997) [hep-ph/9605286]

    Article  ADS  Google Scholar 

  21. T. Sjöstrand, LU-TP-95-20, (1995) [hep-ph/9508391]; T. Sjöstrand, Comp. Phys. Comm 39, 347 (1986); 43, 367 (1987)

    Article  ADS  Google Scholar 

  22. GEANT: Detector Description and Simulation Tool, W5013, GEANT version 3.21

  23. S. Alekhin, Phys. Rev. D 68, 014002 (2003)

    Article  ADS  Google Scholar 

  24. J. Ranft, Phys. Rev. D 51, 64 (1995); J. Ranft, arXiv:hep-ph/9911213; J. Ranft, arXiv:hep-ph/9911232

    Article  ADS  Google Scholar 

  25. J.D. Jackson, Nuovo Cimento 34, 1644 (1964)

    Google Scholar 

Download references

Author information

Consortia

Additional information

PACS

13.15.+g, 13.60.Le, 13.87.Fh, 13.88.+e, 14.40.Ev

Rights and permissions

Reprints and permissions

About this article

Cite this article

The Nomad Collaboration. Production properties of \(K^\star(892)^\pm\) vector mesons and their spin alignment as measured in the NOMAD experiment. Eur. Phys. J. C 46, 69–79 (2006). https://doi.org/10.1140/epjc/s2006-02500-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2006-02500-4

Keywords

Navigation