Skip to main content
Log in

\(J/\psi \) decay into \(\phi (\omega )\) and vector-vector molecular states

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Based on the picture that the \( f_0(1370), f_0(1710), f_2(1270), f'_2(1525), {\bar{K}}^{*0}_2(1430)\) resonances are dynamically generated from the vector-vector interaction, we study the decays \(J/\psi \rightarrow \phi (\omega ) f_0(1370) [f_0(1710)]\), \(J/\psi \rightarrow \phi (\omega ) f_2(1270) [f'_2(1525)]\), and \(J/\psi \rightarrow K^{*0} {\bar{K}}^{*0}_2(1430)\) and make predictions for seven independent ratios that can be done among them. The starting mechanism is that the \(J/\psi \) decays into three vectors, followed by the final state interaction of a pair of them. The weights of the different three vector primary channels are obtained from the basic assumption that the \(J/\psi \) (\(c {\bar{c}}\)) is an SU(3) singlet. By means of only one free parameter we predict four ratios in fair agreement with experiment, make two extra predictions for rates yet unmeasured, and disagree on one data for which only upper bounds are reported. Further measurements are most welcome to complete the information required for these ratios which test the nature of these resonances as dynamically generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We do not have data associated to this article, the only data we have is from well known Particle Data Group.]

Notes

  1. We obtain \(\chi ^2=5.99\) inside the \(90\%\) CI [0.6, 6.3]. Thus, the \(\chi ^2/\nu =1.99\). If we include the ratio \(R_2\) in the fit, then, the fit does not pass the Pearson test, the total \(\chi ^2\) increases around three units, \(\simeq 9.4\), and \(\chi ^2/\nu \simeq 2.35\). However, the value of \(\beta \) obtained barely changes, we still obtain \(\beta \simeq 0.320\) (before we obtained \(\beta =0.323\)).

References

  1. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    ADS  Google Scholar 

  2. N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)

    ADS  Google Scholar 

  3. S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986)

    ADS  Google Scholar 

  4. S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000)

    ADS  Google Scholar 

  5. J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G 31, 481 (2005)

    ADS  Google Scholar 

  6. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rept. 639, 1 (2016)

    ADS  Google Scholar 

  7. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017)

    ADS  Google Scholar 

  8. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rept. 668, 1 (2017)

    ADS  Google Scholar 

  9. F.K. Guo, C. Hanhart, U.G. Meissner, Q. Wang, Q. Zhao, B.S. Zou, Rev. Mod. Phys. 90, 015004 (2018)

    ADS  Google Scholar 

  10. A. Ali, J.S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97, 123 (2017)

    ADS  Google Scholar 

  11. S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018)

    ADS  Google Scholar 

  12. M. Karliner, J.L. Rosner, T. Skwarnicki, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018)

    ADS  Google Scholar 

  13. Y.R. Liu, H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Prog. Part. Nucl. Phys. 107, 237 (2019)

    ADS  Google Scholar 

  14. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.P. Shen, C.E. Thomas, A. Vairo, C.Z. Yuan,. arXiv:1907.07583 [hep-ex]

  15. R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 122 (2019) no.22, 222001

  16. H.X. Chen, W. Chen, S.L. Zhu, Phys. Rev. D 100(5), 051501 (2019)

    ADS  Google Scholar 

  17. M. Z. Liu, Y. W. Pan, F. Z. Peng, M. Sanchez Sanchez, L. S. Geng, A. Hosaka and M. Pavon Valderrama, Phys. Rev. Lett. 122(24), 242001 (2019). https://doi.org/10.1103/PhysRevLett.122.242001

  18. J. He, Eur. Phys. J. C 79(5), 393 (2019). https://doi.org/10.1140/epjc/s10052-019-6906-1

    Article  ADS  Google Scholar 

  19. R. Chen, Z.F. Sun, X. Liu, S.L. Zhu, Phys. Rev. D 100, 011502 (2019)

    ADS  Google Scholar 

  20. C.W. Xiao, J. Nieves, E. Oset, Phys. Rev. D 100, 014021 (2019)

    ADS  Google Scholar 

  21. J.R. Zhang, Eur. Phys. J. C 79(12), 1001 (2019)

    ADS  Google Scholar 

  22. L. Meng, B. Wang, G.J. Wang, S.L. Zhu, Phys. Rev. D 100, 014031 (2019)

    ADS  Google Scholar 

  23. M.B. Voloshin, Phys. Rev. D 100, 034020 (2019)

    ADS  Google Scholar 

  24. Y. Yamaguchi, H. Garcš\(^{{{\rm a}}}\)a-Tecocoatzi, A. Giachino, A. Hosaka, E. Santopinto, S. Takeuchi and M. Takizawa, arXiv:1907.04684 [hep-ph]

  25. Z.G. Wang, X. Wang,. arXiv:1907.04582 [hep-ph]

  26. M. Pavon Valderrama, Phys. Rev. D 100, no. 9, 094028 (2019)

  27. Y.J. Xu, C.Y. Cui, Y.L. Liu, M.Q. Huang,. arXiv:1907.05097 [hep-ph]

  28. T.J. Burns, E.S. Swanson,. arXiv:1908.03528 [hep-ph]

  29. Y.H. Lin, B.S. Zou, Phys. Rev. D 100(5), 056005 (2019)

    ADS  Google Scholar 

  30. Y. Yamaguchi, A. Hosaka, S. Takeuchi, M. Takizawa,. arXiv:1908.08790 [hep-ph]

  31. J.J. Wu, R. Molina, E. Oset, B.S. Zou, Phys. Rev. Lett. 105, 232001 (2010)

    ADS  Google Scholar 

  32. J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997)

    ADS  Google Scholar 

  33. N. Kaiser, Eur. Phys. J. A 3, 307 (1998)

    ADS  Google Scholar 

  34. M.P. Locher, V.E. Markushin, H.Q. Zheng, Eur. Phys. J. C 4, 317 (1998)

    ADS  Google Scholar 

  35. J. Nieves, E. Ruiz, Arriola. Nucl. Phys. A 679, 57–117 (2000). https://doi.org/10.1016/S0375-9474(00)00321-3

    Article  ADS  Google Scholar 

  36. J.A. Oller, E. Oset, A. Ramos, Prog. Part. Nucl. Phys. 45, 157 (2000)

    ADS  Google Scholar 

  37. E. Oset et al., Int. J. Mod. Phys. E 25, 1630001 (2016)

    ADS  Google Scholar 

  38. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 730, 392 (2004)

    ADS  Google Scholar 

  39. L. Roca, E. Oset, J. Singh, Phys. Rev. D 72, 014002 (2005)

    ADS  Google Scholar 

  40. N. Kaiser, P.B. Siegel, W. Weise, Nucl. Phys. A 594, 325 (1995)

    ADS  Google Scholar 

  41. E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998)

    ADS  Google Scholar 

  42. J.A. Oller, U.G. Meissner, Phys. Lett. B 500, 263 (2001)

    ADS  Google Scholar 

  43. M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002)

    ADS  Google Scholar 

  44. T. Inoue, E. Oset and M. J. Vicente Vacas, Phys. Rev. C 65 (2002) 035204

  45. C. Garcia-Recio, J. Nieves, E. Ruiz Arriola and M. J. Vicente Vacas, Phys. Rev. D 67 (2003) 076009

  46. D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 725, 181 (2003)

    ADS  Google Scholar 

  47. T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

    ADS  Google Scholar 

  48. Y. Kamiya, K. Miyahara, S. Ohnishi, Y. Ikeda, T. Hyodo, E. Oset, W. Weise, Nucl. Phys. A 954, 41 (2016)

    ADS  Google Scholar 

  49. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    ADS  Google Scholar 

  50. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    ADS  Google Scholar 

  51. G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989)

    ADS  Google Scholar 

  52. M. Bando, T. Kugo, K. Yamawaki, Phys. Rept. 164, 217 (1988)

    ADS  Google Scholar 

  53. M. Harada, K. Yamawaki, Phys. Rept. 381, 1 (2003)

    ADS  Google Scholar 

  54. U.G. Meissner, Phys. Rept. 161, 213 (1988)

    ADS  Google Scholar 

  55. H. Nagahiro, L. Roca, A. Hosaka, E. Oset, Phys. Rev. D 79, 014015 (2009)

    ADS  Google Scholar 

  56. R. Molina, D. Nicmorus, E. Oset, Phys. Rev. D 78, 114018 (2008)

    ADS  Google Scholar 

  57. L.S. Geng, E. Oset, Phys. Rev. D 79, 074009 (2009)

    ADS  Google Scholar 

  58. J.J. Xie, E. Oset, Phys. Rev. D 90, 094006 (2014)

    ADS  Google Scholar 

  59. J.J. Xie, E. Oset, Eur. Phys. J. A 51, 111 (2015)

    ADS  Google Scholar 

  60. J.J. Xie, E. Oset, L.S. Geng, Phys. Rev. C 93, 025202 (2016)

    ADS  Google Scholar 

  61. H. Nagahiro, J. Yamagata-Sekihara, E. Oset, S. Hirenzaki, R. Molina, Phys. Rev. D 79, 114023 (2009)

    ADS  Google Scholar 

  62. A. Martinez Torres, L. S. Geng, L. R. Dai, B. X. Sun, E. Oset and B. S. Zou, Phys. Lett. B 680 (2009) 310

  63. L.R. Dai, E. Oset, Eur. Phys. J. A 49, 130 (2013)

    ADS  Google Scholar 

  64. L.R. Dai, J.J. Xie, E. Oset, Phys. Rev. D 91, 094013 (2015)

    ADS  Google Scholar 

  65. U.G. Meissner, J.A. Oller, Nucl. Phys. A 679, 671 (2001)

    ADS  Google Scholar 

  66. L. Roca, J.E. Palomar, E. Oset, H.C. Chiang, Nucl. Phys. A 744, 127 (2004)

    ADS  Google Scholar 

  67. T.A. Lahde, U.G. Meissner, Phys. Rev. D 74, 034021 (2006)

    ADS  Google Scholar 

  68. W.H. Liang, S. Sakai, E. Oset, Phys. Rev. D 99, 094020 (2019)

    ADS  Google Scholar 

  69. M. Ablikim et al., BESIII Collaboration. Phys. Rev. D 98, 072005 (2018)

    ADS  Google Scholar 

  70. M. Ablikim et al., BESIII Collaboration. Phys. Rev. D 95, 032002 (2017)

    ADS  Google Scholar 

  71. W.H. Liang, J.J. Xie, E. Oset, Eur. Phys. J. C 76, 700 (2016)

    ADS  Google Scholar 

  72. M. Ablikim et al., BESIII Collaboration. Phys. Rev. D 91, 112008 (2015)

    ADS  Google Scholar 

  73. S.J. Jiang, S. Sakai, W.H. Liang, E. Oset, Phys. Lett. B 797, 134831 (2019)

    Google Scholar 

  74. D. Gülmez, U.G. Meissner, J.A. Oller, Eur. Phys. J. C 77, 460 (2017)

    ADS  Google Scholar 

  75. M.L. Du, D. Gülmez, F.K. Guo, U.G. Meissner, Q. Wang, Eur. Phys. J. C 78, 988 (2018)

    ADS  Google Scholar 

  76. L.S. Geng, R. Molina, E. Oset, Chin. Phys. C 41, 124101 (2017)

    ADS  Google Scholar 

  77. L. S. Geng, R. Molina and E. Oset, PTEP 2019, no. 10, 103B05 (2019)

  78. S. Weinberg, Phys. Rev. 137, B672 (1965)

    ADS  Google Scholar 

  79. M. Tanabashi et al., Particle data group. Phys. Rev. D 98, 030001 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

L.R.D. and L.S.G acknowledge supports from the National Natural Science Foundation of China (Grant Nos. 11975009, 11575076, 11735003, 11975041). R.M. and E.O. acknowledge the hospitality of Beihang University where this work was initiated. This work is partly supported by the Talento Program of the Community of Madrid and the Complutense University of Madrid, under the project with Ref. 2018-T1/TIC-11167, and by the Spanish Ministerio de Economia y Competitividad and European FEDER funds under Contracts No. FIS2017-84038-C2-1-P B and No. FIS2017-84038-C2-2-P B, and the Generalitat Valenciana in the program Prometeo II-2014/068, and the project Severo Ochoa of IFIC, SEV-2014-0398 (EO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Molina.

Additional information

Communicated by Ralf Rapp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, R., Dai, L.R., Geng, L.S. et al. \(J/\psi \) decay into \(\phi (\omega )\) and vector-vector molecular states. Eur. Phys. J. A 56, 173 (2020). https://doi.org/10.1140/epja/s10050-020-00176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00176-y

Navigation