Skip to main content
Log in

The determination of the astrophysical S-factor of the direct 18O(p,\(\gamma\))19F capture by the ANC method

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The depletion of 18O via the \((\mathrm{p},\gamma)\) capture competes with the \((\mathrm{p}, \alpha)\) capture during the CNO cycles in AGB stars. Despite the fact that the \((\mathrm{p}, \alpha)\) capture is dominant, the \( (\mathrm{p}, \gamma)\) can play an important role in mixing stages of the AGB star evolution. Here, we attempt to determine the astrophysical S-factor of the direct part of the 18O(p,\(\gamma\))19F capture by the indirect method of asymptotic normalization coefficients (ANC). We measure the differential cross section of the transfer reaction 18O(3He, d)19F at a 3He energy of 24.6 MeV. The measurement was performed on the cyclotron of the CANAM infrastructure of NPI in Řež, Czech Republic, with the gas target consisting of the high-purity 18O (99.9%). The reaction products were measured by eight \( \Delta E\)-E telescopes composed of thin and thick silicon surface-barrier detectors. The parameters of the optical model for the input channel were deduced by means of the code ECIS and the analysis of transfer reactions to 12 levels of the 19F nucleus up to 8.014 MeV was made by the code FRESCO. The deduced ANCs were then used to specify the direct contribution to the 18O(p,\(\gamma\))19F capture process and were compared with the mutually different results of two works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Bruno et al., Phys. Lett. B 790, 237 (2019)

    Article  ADS  Google Scholar 

  2. M. La Cognata, C. Spitaleri, A.M. Mukhamedzhanov, Astrophys. J. 723, 1512 (2010)

    Article  ADS  Google Scholar 

  3. C. Abia, R.P. Hedrosa, I. Domínguez, O. Straniero, Astron. Astrophys. 599, A39 (2017)

    Article  ADS  Google Scholar 

  4. S. Palmerini, O. Trippella, M. Busso, Mon. Not. R. Acad. Sci. 497, 1193 (2017)

    ADS  Google Scholar 

  5. M. Wiescher, H.W. Becker, J. Görres, K.-U. Kettner, H.P. Trautvetter, W.E. Kieser, C. Rolfs, R.E. Azume, K.P. Jackson, J.W. Hammer, Nucl. Phys. A 349, 165 (1980)

    Article  ADS  Google Scholar 

  6. R.B. Vogelaar, T.R. Wang, S.E. Kellog, R.W. Kavanagh, Phys. Rev. C 42, 753 (1990)

    Article  ADS  Google Scholar 

  7. M.Q. Buckner, C. Iliadis, J.M. Cesaratto, C. Howard, T.B. Clegg, A.E. Champagne, S. Daigle, Phys. Rev. C 86, 065804 (2012)

    Article  ADS  Google Scholar 

  8. H.M. Xu, C.A. Gagliardi, A.M. Mukhamedzhanov, N.K. Timofeyuk, R.E. Tribble, Phys. Rev. Lett. 73, 2027 (1994)

    Article  ADS  Google Scholar 

  9. C.A. Gagliardi, R.E. Tribble, A. Azhari, H.L. Clark, Y.-W. Lui, A.M. Mukhamedzhanov, A. Sattarov, L. Trache, V. Burjan, J. Cejpek, V. Kroha, Š. Piskoř, J. Vincour, Phys. Rev. C 59, 1149 (1999)

    Article  ADS  Google Scholar 

  10. L.L. Green, C.O. Lennon, I.M. Naqib, Nucl. Phys. A 142, 137 (1970)

    Article  ADS  Google Scholar 

  11. C. Schmidt, H.H. Duhm, Nucl. Phys. A 155, 644 (1970)

    Article  ADS  Google Scholar 

  12. A.E. Champagne, M.L. Pitt, Nucl. Phys. A 457, 367 (1986)

    Article  ADS  Google Scholar 

  13. M. Yasue, T. Hasegawa, S.I. Hayakawa, K. Ieki, J. Kasagi, S. Kubono, T. Murakami, K. Nisimura, K. Ogawa, H. Ohnuma, R.J. Peterson, K. Shimizu, M.H. Tanaka, H. Toyokawa, Phys. Rev. C 4, 1242 (1992)

    Article  ADS  Google Scholar 

  14. J. Vernotte, G. Berrier-Ronsin, J. Kalifa, R. Tamisier, Nucl. Phys. A 390, 285 (1982)

    Article  ADS  Google Scholar 

  15. G.Th. Kaschl, G.J. Wagner, G. Mairle, U. Schmidt-Rohr, P. Turek, Nucl. Phys. A 155, 417 (1970)

    Article  ADS  Google Scholar 

  16. http://www.tunl.duke.edu

  17. http://ie.lbl.gov

  18. V. Burjan, Z. Hons, V. Kroha, J. Mrázek J., Š. Piskoř, A.M. Mukhamedzhanov, L. Trache, R.E. Tribble, M. La Cognata, L. Lamia, G.R. Pizzone, S. Romano, C. Spitaleri, A. Tumino, EPJ Web of Conferences 165, 01007 (2017)

    Article  Google Scholar 

  19. C.M. Perey, F.G. Perey, At. Data Nucl. Data Tables 17, 1 (1976)

    Article  ADS  Google Scholar 

  20. H.J. Trost, P. Lezoch, U. Strohbusch, Nucl. Phys. A 462, 333 (1987)

    Article  ADS  Google Scholar 

  21. J. Raynal, code ECIS79 (1979) (unpublished)

  22. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988)

    Article  ADS  Google Scholar 

  23. W.W. Daehnick, J.D. Childs, Z. Vrcelj, Phys. Rev. C 21, 2253 (1980)

    Article  ADS  Google Scholar 

  24. D.R. Tilley, H.R. Weller., C.M. Cheves, R.M. Chasteler, Nucl. Phys. A 595, 1 (1995)

    Article  ADS  Google Scholar 

  25. C. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, 1988)

  26. A.M. Mukhamedzhanov, H.L. Clark, C.A. Gagliardi, Y.W. Lui, L. Trache, H.M. Xu, X.G. Zhou, V. Burjan, J. Cejpek, V. Kroha, F. Carstoiu, Phys. Rev. C 56, 1302 (1997)

    Article  ADS  Google Scholar 

  27. I. Brida, Steven C. Pieper, R.B. Wiringa, Phys. Rev. C 84, 024319 (2011)

    Article  ADS  Google Scholar 

  28. C. Iliadis, M. Wiescher, Phys. Rev. C 64, 064305 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Burjan.

Additional information

Communicated by P. Woods

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this publication.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burjan, V., Hons, Z., Kroha, V. et al. The determination of the astrophysical S-factor of the direct 18O(p,\(\gamma\))19F capture by the ANC method. Eur. Phys. J. A 55, 114 (2019). https://doi.org/10.1140/epja/i2019-12801-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12801-8

Navigation