Skip to main content
Log in

Improving the Electrochemical Properties of a Cathode Material Based on Lithium–Manganese Phosphate through the Partial Substitution of Mn for Ni

  • NANOMATERIALS FOR FUNCTIONAL AND STRUCTURAL PURPOSES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Lithium and transition-metal phosphates are promising cathode materials for lithium-ion batteries. Lithium manganese phosphate LiMnPO4 has a higher specific energy density than LiFePO4 used in practice: theoretical values of 700 and 580 W h/kg, respectively. However, its use is hampered by a number of disadvantages: reduced electronic and ionic conductivity, inferior stability of the structure in the charged form, and large changes in the volume during (de)lithiation. LiMnPO4 and LiMn0.95Ni0.05PO4 samples are synthesized by the solvothermal method and studied using X-ray powder diffraction, low-temperature nitrogen adsorption, scanning electron microscopy, and electrochemical methods. It is shown that a small degree of substitution of Mn for Ni (5 at %) leads to an increase in the capacity and Coulombic efficiency of LiMnPO4, a decrease in charge-transfer resistance, and an increase in Li+ diffusion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, J. Electrochem. Soc. 144, 1188 (1997). https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  2. A. Mauger and C. M. Julien, Batteries 4, 39 (2018). https://doi.org/10.3390/batteries4030039

    Article  CAS  Google Scholar 

  3. L. Yang, W. Deng, W. Xu, et al., J. Mater. Chem. A 9, 14214 (2021). https://doi.org/10.1039/D1TA01526E

    Article  CAS  Google Scholar 

  4. J. K. Ling, C. Karuppiah, S. G. Krishnan, et al., Energy Fuels 35, 10428 (2021). https://doi.org/10.1021/acs.energyfuels.1c01102

    Article  CAS  Google Scholar 

  5. J. Han, J. Yang, H. Lu, and J. Wang, Ind. Eng. Chem. Res. 61, 7451 (2022). https://doi.org/10.1021/acs.iecr.1c04639

    Article  CAS  Google Scholar 

  6. K. Rissouli, K. Benkhouja, J. R. Ramos-Barrado, and C. M. Julien, Mater. Sci. Eng., B 98, 185 (2003). https://doi.org/10.1016/S0921-5107(02)00574-3

    Article  CAS  Google Scholar 

  7. Y. Huang, N. A. Chernova, Q. Yin, et al., Inorg. Chem. 55, 4335 (2016). https://doi.org/10.1021/acs.inorgchem.6b00089

    Article  CAS  PubMed  Google Scholar 

  8. A, Yamada and S.-C. Chung, J. Electrochem. Soc. 148, A960 (2001). https://doi.org/10.1149/1.1385377

  9. J.M. Osorio-Guillen, B. Holm, R. Ahuja, and B. Johansson, Solid State Ionics 1, 221 (2004). https://doi.org/10.1016/j.ssi.2003.09.015

    Article  CAS  Google Scholar 

  10. N. Meethong, Y.-H. Kao, S. A. Speakman, and Y.‑M. Chiang, Adv. Funct. Mater 19, 1060 (2009). https://doi.org/10.1002/adfm.200801617

    Article  CAS  Google Scholar 

  11. N.V. Kosova, E.T. Devyatkina, A.B. Slobodyuk, and S.A. Petrov, Electrochim. Acta 59, 404 (2012). https://doi.org/10.1016/j.electacta.2011.10.082

    Article  CAS  Google Scholar 

  12. A. Perea, L. Castro, L. Aldon, et al., J. Solid State Chem. 192, 201 (2012). https://doi.org/10.1016/j.jssc.2012.04.016

    Article  CAS  Google Scholar 

  13. S. A. Yaroslavtsev, N. I. Vostrov, S. A. Novikova, et al., J. Phys. Chem. C 124, 13026 (2020). https://doi.org/10.1021/acs.jpcc.0c03380

    Article  CAS  Google Scholar 

  14. O. A. Drozhzhin, V. D. Sumanov, O. M. Karakulina, et al., Electrochim. Acta 191, 149 (2016). https://doi.org/10.1016/j.electacta.2016.01.018

    Article  CAS  Google Scholar 

  15. J. Molenda, W. Ojczyk, and J. Marzec, J. Power Sources 174, 689 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.238

    Article  CAS  Google Scholar 

  16. D.B. Ravnsbæk, K. Xiang, W. Xing, et al., Nano Lett. 14, 1484 (2014). https://doi.org/10.1021/nl404679t

    Article  CAS  PubMed  Google Scholar 

  17. J. Han, J. Yang, Z. Xu, et al., J. Alloys Compd. 894, 162510 (2022). https://doi.org/10.1016/j.jallcom.2021.162510

    Article  CAS  Google Scholar 

  18. J. O. Herrera, H. Camacho-Montes, L. E. Fuentes, and L. Álvarez-Contreras, J. Mater. Sci. Chem. Eng. 3, 54 (2015). https://doi.org/10.4236/msce.2015.35007

    Article  CAS  Google Scholar 

  19. N. H. Kwon, D. Mouck-Makanda, and K. M. Fromm, Batteries 4, 50 (2018). https://doi.org/10.3390/batteries4040050

    Article  CAS  Google Scholar 

  20. F. Wang, J. Yang, Y. NuLi, and J. Wang, Electrochim. Acta 103, 96 (2013). https://doi.org/10.1016/j.electacta.2013.03.201

    Article  CAS  Google Scholar 

  21. A. Mauger and C. Julien, Ionics 20, 751 (2014). https://doi.org/10.1007/s11581-014-1131-2

    Article  CAS  Google Scholar 

  22. K. Rajammal, D. Sivakumar, N. Duraisamy, et al., Ionics 22, 1551 (2016). https://doi.org/10.1007/s11581-016-1685-2

    Article  CAS  Google Scholar 

  23. G. Kaurz and B. D. Gates, J. Electrochem. Soc. 169, 043504 (2022). https://doi.org/10.1149/1945-7111/ac60f3

    Article  CAS  Google Scholar 

  24. A. Hebert and E. McCalla, Mater. Adv. 2, 3474 (2021). https://doi.org/10.1039/d1ma00081k

    Article  CAS  Google Scholar 

  25. M. Francesco Sgroi, R. Lazzaroni, D. Beljonne, and D. Pullini, Batteries 3, 11 (2017). https://doi.org/10.3390/batteries3020011

    Article  CAS  Google Scholar 

  26. S. Oukahou, M. Maymoun, A. Elomrani, et al., ACS Appl. Energy Mater. 5, 10591 (2022). https://doi.org/10.1021/acsaem.2c01319

    Article  CAS  Google Scholar 

  27. A. Mauger, C. M. Julien, M. Armand, et al., Curr. Opin. Electrochem. 6, 63 (2017). https://doi.org/10.1016/j.coelec.2017.10.015

    Article  CAS  Google Scholar 

  28. O. A. Drozhzhin, A. M. Alekseeva, O. A. Tyablikov, et al., Russ. J. Electrochem. 58, 998 (2022). https://doi.org/10.1134/S1023193522110052

    Article  CAS  Google Scholar 

  29. STOE Win XPOW, Version 1.2 (27-Jul-2001), 2000 STOE, Cie GmbH, Hilpert str. 10, D64295 (Darmstadt).

  30. ICDD PDF-2, International Center for Diffraction Data, Newton Square, USA, 1998.

    Google Scholar 

  31. W.-C. Yang, Y.-J. Bi, B.-C. Yang, et al., Acta. Phys. Sin. 30, 460 (2014). https://doi.org/10.3866/PKU.WHXB201401074

    Article  CAS  Google Scholar 

  32. K. Dokko, T. Hachida, and M. Watanabe, J. Electrochem. Soc. 158, A1275 (2011). https://doi.org/10.1149/2.015112jes

    Article  CAS  Google Scholar 

  33. W. Dreyer, J. Jamnik, C. Guhlke, et al., Nat. Mater. 9, 448 (2010). https://doi.org/10.1038/nmat2730

    Article  CAS  PubMed  Google Scholar 

  34. A. Yamada, H. Koizumi, Si. Nishimura, et al., Nat. Mater. 5, 357 (2006). https://doi.org/10.1038/nmat1634

    Article  CAS  PubMed  Google Scholar 

  35. K.-Y. Park, I. Park, H. Kim, et al., Energy Environ. Sci. 9, 2902 (2016). https://doi.org/10.1039/c6ee01266c

    Article  CAS  Google Scholar 

  36. O. A. Drozhzhin, A. V. Sobolev, V. D. Sumanov, et al., J. Phys. Chem. 124, 126 (2020). https://doi.org/10.1021/acs.jpcc.9b09594

    Article  CAS  Google Scholar 

  37. Z. Wu, R.-R. Huang, H. Yu, et al., Materials 10, 134 (2017). https://doi.org/10.3390/ma10020134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y. Hong, Z. Tang, S. Wang, et al., J. Mater. Chem. A 3, 10267 (2015). https://doi.org/10.1039/C5TA01218J

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 17-73-30006-P dated March 23, 2021). The work was carried out using equipment purchased using funds from the Moscow University Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Drozhzhin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozhzhin, O.A., Zharikova, E.V., Lakienko, G.P. et al. Improving the Electrochemical Properties of a Cathode Material Based on Lithium–Manganese Phosphate through the Partial Substitution of Mn for Ni. Nanotechnol Russia 18 (Suppl 2), S286–S292 (2023). https://doi.org/10.1134/S2635167624600111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167624600111

Navigation