Skip to main content
Log in

Nanofiber Material with Hydrophobic-Hydrophilic Properties Based on Poly(3-Hydroxybutyrate) and Poly(2-Hydroxyethyl Methacrylate)

  • POLYMER, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

A new material with hydrophobic-hydrophilic properties is obtained based on ultrathin poly(3-hydroxybutyrate) (PHB) fibers modified with poly(2-hydroxyethyl methacrylate). The supramolecular structure of the samples is investigated by structurally dynamic methods: scanning electron microscopy, differential scanning calorimetry, and electron paramagnetic resonance. The equilibrium-kinetic characteristics of water sorption by the material are determined. Evidence is obtained by the method of 1H NMR (proton nuclear magnetic resonance spectroscopy) for the chemical modification of the PHB surface due to the participation of its terminal groups in the transesterification reaction of 2-hydroxyethyl methacrylate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. C. Albertsson and I. K. Varma, Biomacromolecules 4, 1466 (2003). https://doi.org/10.1021/bm034247a

    Article  CAS  Google Scholar 

  2. R. Z. Xiao, Z. W. Zeng, G. L. Zhou, et al., Int. J. Nanomed., No. 5, 1057 (2010). https://doi.org/10.2147/IJN.S14912

  3. M. Shah, N. Ullah, M. H. Choi, et al., Eur. J. Pharm. Biopharm. 80, 518 (2012). https://doi.org/10.1016/j.ejpb.2011.11.014

    Article  CAS  Google Scholar 

  4. X. J. Loh, S. H. Goh, and J. Li, J. Phys. Chem. B 113, 11822 (2009). https://doi.org/10.1021/jp903984r

    Article  CAS  Google Scholar 

  5. N. A. Lavrov, Polymers Based on 2-Hydroxyethyl Methacrylate (Professiya, St. Petersburg, 2017), p. 162 [in Russian].

    Google Scholar 

  6. C. S. Zhao, D. X. Wu, N. Huang, and N. H. Zhao, J. Polym. Sci. B 46, 589 (2008). https://doi.org/10.1002/polb.21394

    Article  CAS  Google Scholar 

  7. A. Cretu, M. Kipping, H. J. Adler, and D. Kuckling, Polym. Int. 57, 905 (2008). https://doi.org/10.1002/pi.2423

    Article  CAS  Google Scholar 

  8. L. Zhu, F. Liu, X. Yu, and L. Xue, ACS Appl. Mater. Interfaces 7, 17748 (2015). https://doi.org/10.1021/acsami.5b03951

    Article  CAS  Google Scholar 

  9. S. Gatti, A. Agostini, R. Ferrari, and D. Moscatelli, Polymers, No. 9, 389 (2017). https://doi.org/10.3390/polym9090389

  10. A. Cretu, R. Gattin, L. Brachais, and D. Barbier-Baudry, Polym. Degrad. Stab. 83, 399 (2004). https://doi.org/10.1016/j.polymdegradstab.2003.09.001

    Article  CAS  Google Scholar 

  11. B. Clément, T. Trimaille, O. Alluin, et al., Biomacromolecules 10, 1436 (2009). https://doi.org/10.1021/bm900003f

    Article  CAS  Google Scholar 

  12. B. Clément, P. Decherchi, F. Féron, et al., Macromol Biosci., No. 11, 1175 (2011). https://doi.org/10.1002/mabi.201100067

  13. I. Yildrim, P. Sungur, A. C. Crecelius-Vitz, et al., Polym. Chem. 8, 6086 (2017). https://doi.org/10.1039/C7PY01176H

    Article  Google Scholar 

  14. M. F. Passos, M. Fernández-Gutiérrez, B. Vázquez-Lasa, et al., Eur. Polym. J. 85, 150 (2016). https://doi.org/10.1016/j.eurpolymj.2016.10.023

    Article  CAS  Google Scholar 

  15. J. Wu, X. Shi, Z. Wang, et al., Polymers 11, 1940 (2019). https://doi.org/10.3390/polym11121940

    Article  CAS  Google Scholar 

  16. Z. Li, J. Yang, and X. J. Loh, NPG Asia Mater. 8, 265 (2016). https://doi.org/10.1038/am.2016.48

    Article  CAS  Google Scholar 

  17. G. C. valle Iulianelli, G. dos S. David, T. N. dos Santos, et al., Polym. Test. 65, 156 (2018). https://doi.org/10.1016/j.polymertesting.2017.11.018

  18. A. M. Diez-Pascua and A. L. Diez-Vicente, Int. J. Mol. Sci. 15, 10950 (2014). https://doi.org/10.3390/ijms150610950

    Article  CAS  Google Scholar 

  19. L. Zhang, X. Deng, S. Zhao, and Z. Huang, Polym. Int. 44, 104 (1997). https://doi.org/10.1002/(SICI)1097-0126(199709)44:1<104::AID-PI812>3.0.CO;2-%23

    Article  CAS  Google Scholar 

  20. E. El-Shafee, G. R. Saad, and S. M. Fahmy, Eur. Polym. J. 37, 2091 (2001). https://doi.org/10.1016/S0014-3057(01)00097-0

    Article  CAS  Google Scholar 

  21. K. Hasheminejad and A. Montazeri, Appl. Surf. Sci. 502, 144150 (2020). https://doi.org/10.1016/j.apsusc.2019.144150

    Article  CAS  Google Scholar 

  22. H. Mitomo, T. Enjôji, Y. Watanabe, et al., J. Macromol. Sci. A 32, 429 (1995). https://doi.org/10.1080/10601329508013674

  23. H.-K. Lao, E. Renard, I. Linossier, et al., Biomacromolecules 8, 416 (2007). https://doi.org/10.1021/bm0609700

    Article  CAS  Google Scholar 

  24. H.-K. Lao, E. Renard, V. Langlois, et al., J. Appl. Polym. Sci. 116, 288 (2010). https://doi.org/10.1002/app.31507

    Article  CAS  Google Scholar 

  25. A. A. Ol’khov, V. S. Markin, R. Yu. Kosenko, et al., Zavod. Lab. Diagn. Mater. 82 (6), 33 (2016).

    Google Scholar 

  26. A. A. Ol’khov, A. L. Iordanskii, G. E. Zaikov, et al., Vestn. Kazan. Tekhnol. Univ. 17 (6), 169 (2014).

    Google Scholar 

  27. S. G. Karpova, A. A. Ol’khov, A. L. Iordanskii, S. M. Lomakin, N. S. Shilkina, A. A. Popov, K. Z. Gumargalieva, and A. A. Berlin, Polymer Sci., Ser. A 58, 76 (2016).

    Article  CAS  Google Scholar 

  28. S. G. Karpova, A. A. Ol’khov, S. N. Chvalun, P. M. Tyubaeva, A. A. Popov, and A. L. Iordanskii, Nanotechnol. Russ. 14, 367 (2019).

    Article  CAS  Google Scholar 

  29. A. A. Ol’khov, A. L. Iordanskii, O. V. Staroverova, et al., Khim. Volokna, No. 5, 8 (2015).

    Google Scholar 

  30. I. Gursel, C. Balcik, Y. Arica, et al., Biomaterials 19, 1137 (1998). https://doi.org/10.1016/S0142-9612(98)00009-X

    Article  CAS  Google Scholar 

  31. Yu. N. Filatov, Electrospinning of Fibrous Materials (ESF-Process) (Neft’ Gaz, Moscow, 1997) [in Russian].

  32. J. Selbin and L. H. Holmes, J. Inorg. Nucl. Chem. 24, 1111 (1962). https://doi.org/10.1016/0022-1902(62)80256-5

    Article  CAS  Google Scholar 

  33. A. Ya. Malkin and A. E. Chalykh, Diffusion and Viscosity of Polymers. Measurement Methods (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  34. A. A. Ol’khov, O. V. Staroverova, M. A. Gol’dshtrakh, A. V. Khvatov, K. Z. Gumargaliev, and A. L. Iordanskii, Russ. J. Phys. Chem. B 10, 830 (2016).

    Article  Google Scholar 

  35. M. Yalpani, R. H. Marchessault, F. G. Morin, and C. J. Monasterios, Macromolecules 24, 6046 (1991). https://doi.org/10.1021/ma00022a024

    Article  CAS  Google Scholar 

  36. A. V. Nikitin, S. N. Kholuiskaja, and V. L. Rubailo, J. Chem. Res. (S), No. 9, 358 (1994).

  37. Y. K. Sung, M. S. Jhon, D. E. Gregonis, and J. D. Andrade, Polymer (Korea) 8, 123 (1984).

    CAS  Google Scholar 

  38. S. N. Kholuiskaya, A. G. Filatova, and S. A. Dubrovsky, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 8, 859 (2014). https://doi.org/10.1134/S1027451014050097

    Article  CAS  Google Scholar 

  39. S. Morita, Front. Chem., No. 2, 1 (2014). https://doi.org/10.3389/fchem.2014.00010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Olkhov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kholuiskaya, S.N., Olkhov, A.A., Karpova, S.G. et al. Nanofiber Material with Hydrophobic-Hydrophilic Properties Based on Poly(3-Hydroxybutyrate) and Poly(2-Hydroxyethyl Methacrylate). Nanotechnol Russia 17, 98–105 (2022). https://doi.org/10.1134/S2635167622010074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622010074

Navigation